Supplementary information:

First-principle calculations of 0D/2D GQDs-MoS₂ mixed van der Waals heterojunctions for photocatalysis: a transition from type I to type II

Li-Long Luo^a, Ping-Xia Wang^a, Xiang-Yan Geng^a, Ying-Tao Liu^a, Roberts I. Eglitis^b, Hong-Qiang Xia^a, Xiao-Yong Lai^a and Xin Wang^{a,*}

^aState Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
^bInstitute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV1067, Latvia

E-mail addresses: wangxin@nxu.edu.cn (X. Wang)

Figure S2 Structures of (a) C_6H_6 , (b) $C_{24}H_{12}$, and (c) $C_{32}H_{14}$.

Figure S3 Structures (top view-left and side view-right) of (a) C_6H_6 -top, (b) C_6H_6 -hollow, and (c) C_6H_6 -bridge.

Figure S4 Structures (top view-left and side view-right) of (a) $C_{24}H_{12}$ -top, (b) $C_{24}H_{12}$ -hollow, and (c) $C_{24}H_{12}$ -bridge.

Figure S5 Structures (top view-left and side view-right) of (a) $C_{24}H_{12}$ -top30°, (b) $C_{24}H_{12}$ -hollow30°, and (c) $C_{24}H_{12}$ -bridge30°.

Figure S6 Structures (top view-left and side view-right) of (a) $C_{32}H_{14}$ -top, (b) $C_{32}H_{14}$ -hollow, and (c) $C_{32}H_{14}$ -bridge.

Figure S7 Structures (top view-left and side view-right) of (a) $C_{32}H_{14}$ -top30°, (b) $C_{32}H_{14}$ -hollow30°, and (c) $C_{32}H_{14}$ -bridge30°.

Figure S8 Structures (top view-left and side view-right) of (a) $C_{32}H_{14}$ -top60°, (b) $C_{32}H_{14}$ -hollow60°, and (c) $C_{32}H_{14}$ -bridge60°.

Figure S9 Structures (top view-left and side view-right) of (a) $C_{32}H_{14}$ -top90°, (b) $C_{32}H_{14}$ -hollow90°, and (c) $C_{32}H_{14}$ -bridge90°.

If we further increase the size of GQDs, the interaction between the adjacent GQDs cannot be avoided and the composite is no longer 0D/2D heterojunction. We can infer when the size of GQDs further increase, the conjugate effect of GQDs will be stronger. As the contact area of GQDs and MoS_2 increases, ultimately we can think of it as a 2D/2D graphene-MoS₂ heterojunction. There is much about graphene-MoS₂ research work.^{1, 2}

Figure S10 Electron localization function (ELF) of the (a) C_6H_6 -MoS₂, (b) $C_{24}H_{12}$ -MoS₂ and (c) $C_{32}H_{14}$ -MoS₂ along with scaling factor (0–1).

Figure S11 Work function of (a) MoS_2 , (b) C_6H_6 , (c) $C_{24}H_{12}$, and (d) $C_{32}H_{14}$.

Figure S12 Diagram of the band edge positions before and after contact of MoS_2 and C_6H_6 ; CBO is the conduction band offset, VBO is the valence band offset, E_{VAC} is the vacuum level, E_C is the bottom of the conduction band, E_V is the top of the valence band, E_g is the band gap, and E_{F1} and E_{F2} are the Fermi levels of MoS_2 and C_6H_6 , respectively.

Figure S13 Diagram of the band edge positions before and after contact of MoS_2 and $C_{24}H_{12}$; CBO is the conduction band offset, VBO is the valence band offset, E_{VAC} is the vacuum level, E_C is the bottom of the conduction band, E_V is the top of the valence band, E_g is the band gap, and E_{F1} and E_{F2} are the Fermi levels of MoS_2 and $C_{24}H_{12}$, respectively.

Figure S14 The partial charge densities (top view) of the CBM (upper) and VBM (bottom) for (a) C_6H_6 -MoS₂, (b) $C_{24}H_{12}$ -MoS₂ and (c) $C_{32}H_{14}$ -MoS₂.

Figure S15 The partial charge densities (side view) of the CBM (upper) and VBM (bottom) for (a) C_6H_6 -MoS₂, (b) $C_{24}H_{12}$ -MoS₂ and (c) $C_{32}H_{14}$ -MoS₂.

As shown in Figure S14-15, the VBMs of $C_{24}H_{12}$ -MoS₂ and $C_{32}H_{14}$ -MoS₂ are both contributed by GQDs and the CBMs of $C_{24}H_{12}$ -MoS₂ and $C_{32}H_{14}$ -MoS₂ are both contributed by MoS₂. So their excited state can have charge-transfer (CT) character. As for C_6H_6 -MoS₂, the electronic densities of the VBM and the CBM are both primarily localized on MoS₂, which indicate C_6H_6 -MoS₂ has locally excited (LE) character.

Configuration	Enorgy (aV)	Binding energy	d(Å)
Configuration	Energy (ev)	(eV)	u(A)
MoS ₂	-2234.603		
C_6H_6	-76.107		
$C_{24}H_{12}$	-262.969		
$C_{32}H_{14}$	-343.611		
А	-2311.259	-0.549	3.206
В	-2311.183	-0.473	3.346
С	-2311.229	-0.519	3.273
D	-2499.218	-1.646	3.309
E	-2499.211	-1.639	3.305
F	-2499.215	-1.643	3.304
G	-2499.271	-1.699	3.268
Н	-2499.182	-1.610	3.334
Ι	-2499.238	-1.666	3.309
J	-2580.343	-2.129	3.307
K	-2580.329	-2.115	3.322
L	-2580.345	-2.131	3.325
Μ	-2580.367	-2.153	3.299
Ν	-2580.333	-2.119	3.339
0	-2580.321	-2.107	3.340
Р	-2580.340	-2.126	3.323
Q	-2580.344	-2.130	3.335
R	-2580.330	-2.116	3.322
S	-2580.340	-2.126	3.329
Т	-2580.330	-2.116	3.341
U	-2580.364	-2.150	3.330

Table S1 Bnding energy, Binding energy per atom and distance of heterojunctions.A-U represent configurations of S3-S9 from top to bottom orderly.

Here, "d" is the difference between average positions along the z-axis of S atoms in the upper layer and the centroids of GQDs as shown in Figure S3. Configuration A, G and M are C_6H_6 -MoS₂, $C_{24}H_{12}$ -MoS₂ and $C_{32}H_{14}$ -MoS₂ in the main body, respectively.

Table S2 Bader charge analysis of C_6H_6 -MoS₂, $C_{24}H_{12}$ -MoS₂ and $C_{32}H_{14}$ -MoS₂.

	Charge Transfer (e)	
	MoS ₂	GQDs
C ₆ H ₆ -MoS ₂	+0.03	-0.03
$C_{24}H_{12}$ -MoS ₂	+0.07	-0.07
$C_{32}H_{14}$ -MoS ₂	+0.08	-0.08

Here, the charge transfer value can be calculated based on the Bader charge³⁻⁶ and it means the amount of charge which MoS_2 or GQDs gained (+) or lost (-) in the process of forming a heterojunction.

	This work	Calculated values
MoS ₂	5.71	5.887
C_6H_6	6.07	
$C_{24}H_{12}$	5.00	5.298
$C_{32}H_{14}$	4.54	

Table S3 Work function (eV) of MoS_2 , C_6H_6 , $C_{24}H_{12}$ and $C_{32}H_{14}$.

	Before contact		After contact	
_	VBM	СВМ	VBM	СВМ
C ₆ H ₆ -MoS ₂				
C ₆ H ₆	-6.54	-1.44	-6.29	-1.19
MoS_2	-5.71	-3.97	-5.82	-4.08
$C_{24}H_{12}$ -MoS ₂				
$C_{24}H_{12}$	-5.46	-2.61	-5.85	-3.00
MoS_2	-5.71	-3.97	-5.39	-3.65
$C_{32}H_{14}$ -MoS ₂				
C ₃₂ H ₁₄	-5.02	-3.07	-5.54	-3.59
MoS ₂	-5.71	-3.97	-5.06	-3.32

Table S4. VBM and CBM relative to the absolute vacuum scale (AVS) (eV) before and after contact.

Table S5. VBM and CBM relative to the normal hydrogen electrode scale (NHE) after contact.

	NHE so	cale (eV)
	VBM	CBM
C ₆ H ₆ -MoS ₂		
C ₆ H ₆	1.79	-3.31
MoS_2	1.32	-0.42
$C_{24}H_{12}$ -Mo S_2		
$C_{24}H_{12}$	1.35	-1.50
MoS_2	0.89	-0.85
$C_{32}H_{14}$ -MoS ₂		
$C_{32}H_{14}$	1.04	-0.91
MoS_2	0.56	-1.18

1. X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang and S. Yang, *Chemistry of Materials*, 2014, **26**, 2344-2353.

2. W. Zan, W. Geng, H. Liu and X. Yao, *Journal of Alloys and Compounds*, 2015, **649**, 961-967.

3. Henkelman Group; The University of Texas at Austin, <u>http://theory.cm.utexas.edu/henkelman/research/bader/</u>, Accessed November, 2021.

4. R. F. W. Bader, *Chemical Reviews*, 1991, **91**, 893-928.

5. W. Tang, E. Sanville and G. Henkelman, *Journal of Physics: Condensed Matter*, 2009, **21**, 084204.

6. M. Yu and D. R. Trinkle, *The Journal of chemical physics*, 2011, **134**, 064111.

D. Pierucci, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. T. C. Johnson, M. C. Asensio and A. Ouerghi, *Nano Letters*, 2016, 16, 4054-4061.

8. L. Cabral, F. P. Sabino, M. P. Lima, G. E. Marques, V. Lopez-Richard and J. L. F. Da Silva, *J. Phys. Chem. C*, 2018, **122**, 18895-18901.