Electronic Supplementary Information

The bending behaviour of L-phenylalanine monohydrate soft crystal via reversible hydrogen bonds rupture and remodeling

Yaxiang Gong^{a, ‡}, Yuanfeng Wei^{b, ‡}, Yuan Gao^b, Zungting Pang^b, Jianjun Zhang^{a,*}, Shuai Qian^{b,*}

^a School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China

^b School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China

[‡]Authors contributed equally.

Corresponding authors:

Dr. Jianjun Zhang School of Pharmacy, China Pharmaceutical University Tel.: +86 13951974969, Email address: myamicute@163.com

Dr. Shuai Qian School of Traditional Chinese Pharmacy, China Pharmaceutical University Tel.: +86 139 15957175, Email address: silence_qs@163.com

1. Lattice energy determination of L-Phe·H₂O

Method

1.1 Differential scanning calorimetry (DSC)

A differential scanning calorimeter (DSC 250, TA Instruments-Waters, U.S.A.) was used to carry out DSC. Approximately 4 mg of sample (L-Phe·H₂O soft crystal and L-Phe (the raw material, RM)) was placed in a nonhermetic aluminum pan, after which it was heated from 25 to 295 °C at a heating rate of 10 °C/min. The dehydration product of L-Phe·H₂O during the heating process was named as L-Phe form-X. Nitrogen gas was used as the purge gas at 20 mL/min. The data was analyzed by Trios software (version 5.1.1.46572). Each experiment was repeated in triplicate.

1.2 Determination of specific heat capacity of L-Phe form X

A differential scanning calorimetry (DSC 250, TA Instruments-Waters, U.S.A.) was used to determine the specific heat capacity of L-Phe form-X was determined by "three-step" method. The empty aluminum pan, sapphire and sample (4 mg) were heated from 150 to 250 °C with a heating rate of 10 °C /min, respectively. The data was analyzed by Trios software (version 5.1.1.46572). The specific heat capacity of L-Phe form-X in the range of 150~250 °C was recorded.

1.3 Lattice energy calculation of L-Phe H₂O

The lattice energy of L-Phe \cdot H₂O can be calculated by sublimation enthalpy as follow¹⁻³:

$$E_{\text{lattice}} = -\Delta H_{\text{sub}} \left(T \right) - 2RT \tag{1}$$

Where E_{lattice} represents lattice energy, ΔH_{sub} is the sublimation enthalpy determined at a specific temperature (*T*), *R* is the gas constant.

Considering the sublimation of crystalline water and proton transfer energy of L-Phe (the energy to be overcome from amphoteric ions to molecules), Eq.(1) should be modified to:

$$E_{\text{lattice}} = -\Delta H_{\text{sub}} \left(T \right) - 2RT - p^{\theta} V_1 + \Delta E_{\text{pt}}$$
⁽²⁾

Where V_1 represents the molar volume of crystalline water at sublimation temperature, p^{θ} represents the standard gas pressure, ΔE_{pt} is the proton transfer energy of amino acids, which is a constant (-137 kJ·mol⁻¹).⁴ Besides, according to Charles' law, ⁵ V_1 at temperature T_1 can be expressed as:

$$V_1 = V^{\theta} T_1 / T^{\theta} \tag{3}$$

Where T^{θ} represents the Kelvin temperature at 0 °C, $T^{\theta}=273$ K, V^{θ} represents the molar volume of ideal gas at 273 K, $V^{\theta}=22.4$ L. Thus, making use of Eq (2) and (3), E_{lattice} can be expressed as:

$$E_{\text{lattice}} = -\Delta H_{\text{sub}} \left(T\right) - 2RT - p^{\theta} \left(\frac{V^{\theta}T_{1}}{T^{\theta}}\right) + \Delta E_{\text{pt}} = -\Delta H_{\text{sub}} \left(T\right) - 3RT + \Delta E_{\text{pt}} \quad (4)$$

Results

DSC is a common method for determining sublimation enthalpy.^{6,7} The DSC curves of L-Phe·H₂O and L-Phe (RM) were shown in Fig. S1. For L-Phe·H₂O, the endothermic peaks at 127 °C (400 K, $\Delta H_{\text{Dehy}} = 163.2\pm2.8$ kJ·mol⁻¹) and 274 °C (547 K, $\Delta H_{\text{fus}}=64.3\pm1.2$ kJ·mol⁻¹) were attributed to dehydration and melting of L-Phe·H₂O, respectively. After dehydration, the specific heat capacity of L-Phe form-X ($C_{\text{p,form-X}}$) was determined to be 197.8±6.4 J·mol⁻¹·K⁻¹. In addition, for L-Phe (RM), only a melting endothermic peak was observed at 274 °C (547K, $\Delta H_{\text{fus}}=62.1\pm1.2$ kJ·mol⁻¹).

Fig. S1 DSC curves of (a) L-Phe·H₂O and (b) L-Phe (RM).

At 400 K, the sublimation reaction of L-Phe \cdot H₂O could be described as follow:

$$\text{L-Phe} \cdot \text{H}_{2}\text{O}(s, 400\text{K}) \rightarrow \text{L-Phe}(g, 400\text{K}) + \text{H}_{2}\text{O}(g, 400\text{K}), \Delta H_{\text{sub}}(\text{L-Phe} \cdot \text{H}_{2}\text{O})$$
(5)

The reaction (5) could be regarded as the sum of Eq. (6), Eq. (7) and Eq. (8):

L-Phe·H₂O(s, 400K)
$$\rightarrow$$
 L-Phe·H₂O(form-X, 400K)+H₂O(g, 400K)

$$\Delta H_{\rm Dehv} = 163.2 \pm 2.8 \text{kJ} \cdot \text{mol}^{-1} \tag{6}$$

$$L-Phe(form-X, 400K) \rightarrow L-Phe(RM, 400K), \Delta H_{trans}(400K)$$
(7)

$$L-Phe(RM, 400K) \rightarrow L-Phe(g, 400K), \Delta H_{sub}(L-Phe, RM, 400K)$$
(8)

Eq. (7) could be regarded as the transition from L-Phe form-X to L-Phe RM at 400 K, and the enthalpy change of this process (ΔH_{trans} (400 K)) could be calculated as follow:

L-Phe(form-X, 547K)
$$\rightarrow$$
 L-Phe(l, 547K), ΔH_{fus} (form-X, 547K) = 64.3kJ·mol⁻¹ (9)

L-Phe (RM, 547K)
$$\rightarrow$$
 L-Phe (l, 547K), ΔH_{fus} (RM, 547K) = 62.1kJ · mol⁻¹ (10)

$$L-Phe(form-X, 547K) \rightarrow L-Phe(RM, 547K)$$
(11)

$$\Delta H_{\text{trans}}(547K) = \Delta H_{\text{fus}}(\text{form-X}, 547K) - \Delta H_{\text{fus}}(\text{RM}, 547K) = 2.2\text{kJ} \cdot \text{mol}^{-1}$$

$$\Delta H_{\text{trans}} (400K) = \Delta H_{\text{trans}} (547K) + (C_{\text{p,form-X}} - C_{\text{p,RM}}) (400K - 547K) = 2.3 \text{kJ} \cdot \text{mol}^{-1} (12)$$

Where $C_{p,form-X}$ and $C_{p,RM}$ were the specific heat capacity of L-Phe form-X and L-Phe RM. $C_{p,RM}$ was reported to be 203.1±1.5 J·mol⁻¹·K⁻¹.⁸

Eq. (8) was the sublimation process of L-Phe at 400K, and the enthalpy change of this process (ΔH_{sub} (L-Phe, 400 K)) could be described as follow:

$$\Delta H_{\rm sub} \left(\text{RM}, 400K \right) = \Delta H_{\rm sub} \left(\text{RM}, 298K \right) + \int_{298K}^{400K} \left(C_{\rm p,g} - C_{\rm p,RM} \right) dT = 158.7 \text{kJ} \cdot \text{mol}^{-1} \quad (13)$$

Where $C_{p,g}$ was the specific heat capacity of gaseous L-Phe, $C_{p,g}=184\pm1$ J·mol⁻¹·K⁻¹.⁸

Combined with Eq. (6), Eq. (12) and Eq. (13), the sublimation enthalpy of L-Phe \cdot H₂O at 400 K could be described as follow:

 $\Delta H_{\text{sub}} (\text{L-Phe} \cdot \text{H}_{2}\text{O}, 400K) = \Delta H_{\text{Dehy}} (400K) + \Delta H_{\text{trans}} (400K) + \Delta H_{\text{sub}} (\text{L-Phe}, \text{RM}, 400K)$ = (163.2 + 2.3 + 158.7) kJ · mol⁻¹ = 324.2kJ · mol⁻¹

When the calculation result of sublimation enthalpy was sustituted into Eq.

(4), the lattice energy of L-Phe·H₂O was obtained to be -112.56 kcal·mol⁻¹.

2. Crystallographic information for L-Phe·H₂O

Formula	C ₉ H ₁₃ NO ₃
Molecular weight	183.20
Crystal system	monoclinic
Space group	P 2 ₁ (4)
a (Å)	13.0612 (5)
b (Å)	5.4197 (2)
c (Å)	13.8643 (6)
α (°)	90
β (°)	102.611
γ (°)	90
Volume (Å ³)	957.746
Z	Z=4
$ ho_{ m calc}$ (g/cm ³)	1.271
20	2.841 to 50.011
F (000)	392
R ₁	0.0318
wR ₂	0.0825
Goodness-of-fit (GOF)	1.047
Temperature (K)	193 (2)
CCDC No.	2009781

Table S1 Crystallographic data of L-Phe \cdot H₂O

Table S2 The intermolecular hydrogen bond parameters of L-Phe $\cdot\mathrm{H_2O}$

No.	Donor-H…Acceptor	D-A/ Å	H···A/ Å	D-H···A/ °
1	O6-H6B(H ₂ O)…O1(L-Phe)	0.846	1.830	9.634
2	N1-H1A(L-Phe)…O6(H ₂ O)	0.910	1.849	176.645
3	O5-H5B(H ₂ O)···O4(L-Phe)	0.874	1.984	149.043
4	N2-H2A(L-Phe)…O4(L-Phe)	0.910	2.020	78.701
5	N2-H2B(L-Phe)…O3(L-Phe)	0.910	1.878	173.345
6	N1-H1C(L-Phe)…O3(L-Phe)	0.910	2.070	139.319
7	N1-H1C(L-Phe)…O2(L-Phe)	0.910	2.388	97.980
8	N2-H2C(L-Phe)…O2(L-Phe)	0.910	1.965	152.045
9	N2-H2C(L-Phe)…O3(L-Phe)	0.910	2.412	110.203

3. Analysis the bending region by *in situ* micro-infrared and *in situ* micro-Raman

Wavenumber	Wavenumber	Wavenumber	Assignments
(cm ⁻¹) in straight state	(cm ⁻¹) in bent state	difference (cm ⁻¹)	
3358 ± 0.23	3363 ± 0.43	5	O-H str.
$\textbf{3028} \pm \textbf{0.44}$	3062 ± 0.57	34	NH3 ⁺ asym. str.
$2846~\pm~0.40$	2846 ± 0.29	0	C-H str.
1598 ± 0.48	1560 ± 0.51	38	NH3 ⁺ asym.bending and
			COO ⁻ asym. str.
1508 ± 0.40	1500 ± 0.32	8	NH3 ⁺ sym.bending
1404 ± 0.17	1417 ± 0.22	13	COO ⁻ asym. str.
$1311~\pm~0.13$	1311 ± 0.49	0	CH ₂ wagging
$1197~\pm~0.38$	1200 ± 0.43	3	C-CH bending
$1148~\pm~0.22$	1150 ± 0.76	2	CH ₂ twisting
$1041~\pm~0.67$	1038 ± 0.91	3	C-C str.
$980~\pm~0.53$	$979~\pm~0.43$	1	CH ₂ rocking
$915~\pm~0.31$	$918~\pm~0.35$	3	C-CH bending
$857~\pm~0.88$	$859~\pm~0.64$	2	C-H out-of plane
			deformation
$779~\pm~0.65$	$782~\pm~0.82$	3	C-C skeletal str.
$694~\pm~0.50$	695 ± 0.46	1	C-H out-of plane
			deformation
516 ± 0.66	521 ± 0.19	5	C-COO ⁻ deformation

Table S3 Micro-infrared assignments for L-Phe $\cdot \rm H_2O$

Wavenumber	Wavenumber	Wavenumber	Assignments
(cm ⁻¹) in straight state	(cm ⁻¹) in bent state	difference (cm ⁻¹)	
138 ± 0.50	146 ± 0.38	8	Lattice modes
$251~\pm~0.57$	$269~\pm~0.55$	18	Lattice modes
$346~\pm~0.78$	$347~\pm~0.60$	1	C-C-C-C in phase vibration
426 ± 0.41	432 ± 0.50	6	COO ⁻ rocking
497 ± 0.60	$\textbf{489} \pm \textbf{0.43}$	9	H ₂ O
$541~\pm~0.34$	539 ± 0.22	2	C ₆ H ₅ -C in plane deformation
618 ± 0.69	$\boldsymbol{624\pm0.78}$	6	COO ⁻ rocking
$823~\pm~0.46$	822 ± 0.61	1	CH ₂ rocking
846 ± 0.50	$\textbf{853} \pm \textbf{0.74}$	7	NH ₃ ⁺ deformation
$1006~\pm~0.37$	1004 ± 0.50	2	C-C of the benzene ring sym.
			str
$1169~\pm~0.65$	$1177~\pm~0.27$	8	C-N str.
1194 ± 0.56	1186 ± 0.84	8	NH ₃ ⁺ rocking
$1310~\pm~0.94$	1311 ± 0.59	1	CH ₂ rocking
1416 ± 0.30	1422 ± 0.47	6	COO ⁻ sym. str
1498 ± 0.29	1506 ± 0.35	8	NH3 ⁺ sym. str
$1587~\pm~0.86$	1588 ± 0.53	1	C-C ring sym. str of the
			benzene
$1607~\pm~0.73$	1607 ± 0.84	0	C-C ring sym. str of the
			benzene

Table S4 Micro-Raman assignments for L-Phe $\cdot \rm H_2O$

4. Difference between the calculated lattice energy and experimental value

Table S5 Lattice energies of L-Phe \cdot H₂O using different combination of force fields and charge assignment rules

Force field/Charge rule	Calculated values (kcal/mol)	Experimental values (kcal/mol)	The difference between experimental and calculated values (kcal/mol)
COMPASS/Forcefield			(Rour mor)
assigned	-29.683		-82.877
COMPASS/Gasteiger	-102.121	112.50	-10.439
COMPASS/Qeq	-55.048		-57.512
CVFF/Forcefield assigned	-29.421		-83.139
CVFF/Qeq	-51.438		-61.122
CVFF/Gasteiger	-95.941		-16.619
Universal/Qeq	-73.995	-112.30	-38.565
Universal/Gasteiger	-58.001		-54.559
Dreiding/Gasteiger	-115.105		2.545
Dreiding/Qeq	-66.901		-45.659
PCFF/Forcefield assigned	-26.730		-85.83
PCFF/Gasteiger	-95.941		-16.619
PCFF/Qeq	-56.484		56.076

5. Attachment energy calculation

Table S6 Attachment energies and molecular interaction energies in each direction of L-Phe \cdot H₂O soft crystal

h k l	$E_{\rm att}({\rm Total})$	$E_{\rm att}({\rm vdW})$	E_{att} (Electrostatic)	$E_{\rm att}({\rm H} ext{-bond})$
[0 1 0]	-76.858 kcal/mol	-4.187 kcal/mol	-62.447 kcal/mol	-10.223 kcal/mol
[1 0 0]	-18.078 kcal/mol	-2.26 kcal/mol	-14.187 kcal/mol	-1.627 kcal/mol
[0 1 1]	-65.453 kcal/mol	-3.061 kcal/mol	-55.276 kcal/mol	-7.117 kcal/mol
[1 1 0]	-68.153 kcal/mol	-2.960 kcal/mol	-57.103 kcal/mol	-8.089 kcal/mol

References

- 1. C. Ouvrard and J. B. Mitchell, *Acta Crystallographica Section B: Structural Science*, 2003, **59**, 676-685.
- 2. M. Salahinejad, T. C. Le and D. A. Winkler, *Journal of chemical information and modeling*, 2013, **53**, 223-229.
- 3. A. Hagler, E. Huler and S. Lifson, *Journal of the American Chemical Society*, 1974, **96**, 5319-5327.
- 4. V. Bisker-Leib and M. F. Doherty, *Crystal Growth & Design*, 2015, **3**, 221-237.
- 5. G. Chandan and M. Cascella, 2019.
- 6. J. P. Murray and J. O. Hill, *Thermochimica Acta*, 1984, **72**, 341-347.
- 7. A. Rojas-Aguilar, E. Orozco-Guare?O, Mart?, M. Amp, #x and nez-Herrera, *Journal of Chemical Thermodynamics*, 2001, **33**, 1405-1418.
- 8. V. V. Tyunina, A. V. Krasnov, E. Y. Tyunina, V. G. Badelin and G. V. Girichev, *Journal of Chemical Thermodynamics*, 2014, **74**, 221-226.