Supplementary Information

New multiferroic BiFeO₃ with large polarization

Runqing Zhang, a Peiju Hu, a Lingling Bai, a Xing Xie, a Huafeng Dong, *ab Minru Wen, a Zhongfei

Mu, ° Xin Zhang, a and Fugen Wu d

AFFILIATIONS

^{*a*} School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, China

^b Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China

^c Experimental Teaching Department, Guangdong University of Technology, Guangzhou, 510006, China

^d School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

*Corresponding author. E-mail: <u>hfdong@gdut.edu.cn</u>

Table S1 Energy (eV/atom) of different crystal structures and magnetic configurations calculated by HSE06 and PBE functional.

configuration	HSE06	PBE
P63-G-AFM	-8.7512488	-6.5477720
<i>P</i> 6 ₃ 22-G-AFM	-8.7512600	-6.5480297
R3c-G-AFM	-8.8657991	-6.6139328
R3c-A-AFM	-8.86564431	-6.6021649
R3c-C-AFM	-8.86576768	-6.6022187
<i>R</i> 3 <i>c</i> -FM	-8.82985245	-6.5691301
R3c-N-FM	-8.70652646	-6.4855000

Table S2 The first and second nearest neighbor exchange constants (meV) of $P6_3$ -BiFeO₃ and $P6_322$ -BiFeO₃.

Structure	J _{1x}	J _{1y}	J_{1z}	J _{2x}	J _{2y}	J _{2z}
P63	22.56	22.61	22.69	2.91	3.68	3.38
P6 ₃ 22	25.89	25.90	25.88	4.42	4.33	4.37

Table S3 The elastic stiffness coefficient of $P6_3$ -BiFeO₃ and $P6_3$ 22-BiFeO₃, the unit of C_{ij} is GPa

structure	C_{11}	C_{12}	C_{13}	C_{33}	C_{44}	C ₆₆
<i>P</i> 6 ₃	168.2	150.1	82.8	229	55.6	9.1
P6 ₃ 22	169.7	150.4	83.4	229.3	56.1	9.7

Table S4 Bond lengths (Å) of *R*3*c*, *P*6₃ and *P*6₃22.

Bond	R3c	<i>P</i> 6 ₃	P6 ₃ 22
Fe-O ₁	2.1185	2.0296	2.0415
Fe-O ₂	2.1185	2.0297	2.0415
Fe-O ₃	2.1185	2.0540	2.0415
Fe-O ₄	1.9942	2.0550	2.0415
Fe-O ₅	1.9942	2.0290	2.0415
Fe-O ₆	1.9942	2.0547	2.0415
Bi-O ₁	2.4802	2.3670	2.3940
Bi-O ₂	2.4802	2.3661	2.3940
Bi-O ₃	2.4802	2.3673	2.3940
Bi-O ₄	2.3345	2.4252	2.3940
Bi-O ₅	2.3345	2.4259	2.3940
Bi-O ₆	2.3345	2.4254	2.3940

Fig. S1 Crystal structure of $P6_3$ -BiFeO₃ (a) and $P6_322$ -BiFeO₃ (b). The purple, yellow and red spheres represent the Bi, Fe, and O atoms, respectively. Two magnetic exchange constants are marked with J₁ and J₂.

Fig. S2 Specific heat curves for $P6_3$ -BiFeO₃ (a) and $P6_322$ -BiFeO₃ (c) were calculated by Monto Carlo simulations. Magnetic moment curves for $P6_3$ -BiFeO₃ (b) and $P6_322$ -BiFeO₃ (d) were calculated by Monto Carlo simulations.

Fig. S3 The atomic coordination situation of Fe in R3c (a), $P6_3$ (b) and $P6_322$ (c).

Firstly, two adjacent Fe-O octahedrons of R3c are connected by an oxygen atom, while the two adjacent Fe-O octahedrons of $P6_3$ and $P6_322$ are connected by three oxygen atoms (Fig. 3). Secondly, the O₁-Fe-O₆ angle of R3c is 167.1°, while the O₁-Fe-O₆ angles of $P6_3$ and $P6_322$ are 179.2° and 180° (Fig. S3). Thirdly, there are two types of Fe-O bond lengths in R3c, i.e., 2.1185 Å (Fe-O₁, Fe-O₂, Fe-O₃) and 1.9942 Å (Fe-O₄, Fe-O₅, Fe-O₆), while all the Fe-O bond lengths in $P6_322$ are 2.0415 Å (Table S4). Therefore, the Fe-O octahedron is noncentrosymmetric in R3c, while the Fe-O octahedron is centrosymmetric in $P6_322$ and almost centrosymmetric in $P6_3$ (Fig. S3).

Fig. S4 The Bi-O octahedrons of R3c (a), $P6_3$ (b) and $P6_322$ (c). The atomic coordination situation of Bi in R3c (d), $P6_3$ (e) and $P6_322$ (f).

For the Bi-O octahedron, firstly, the distribution of Bi-O bond is nonuniform in R3c, while it is relatively uniform in $P6_3$ and $P6_322$ (Fig. S4). Secondly, the O₁-Bi-O₄ angle of R3c is 113.6°, while the O₁-Bi-O₄ angles of $P6_3$ and $P6_322$ are 94.7° and 94.6° (Fig. S4). Thirdly, there are two types of Bi-O bond lengths in R3c, i.e., 2.4802 Å (Bi-O₁, Bi-O₂, Bi-O₃) and 2.3345 Å (Bi-O₄, Bi-O₅, Bi-O₆), while all the Bi-O bond lengths in $P6_322$ are 2.3940 Å (Table S4).