Construction of stable Mo_xS_y/CeO₂ heterostructures for electrocatalytic hydrogen evolution reaction

Hongxian Liu^a, Pai Wang^a, Jinxiu Jiang^a, Gang Cheng^b, Tongwei Wu^a and Yanning

Zhang^{a*}

 ^a Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
^b Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China

	$E_{\rm b}$ (eV/atom)	$E_{\rm c}$ (eV/atom)	
2H-MoS ₂	0.51	-5.10	
Mo ₃ S ₄	-0.69	-4.24	
Mo ₄ S ₃	-1.45	-4.00	
Mo ₄ S ₄	-0.91	-4.28	
Mo ₆ S ₈	-0.08	-4.85	

Table S1. The calculated cohesive energy and binding energy.

The calculated binding energy per atom (E_b) and cohesive energy per atom (E_c) are defined as

$$E_{\rm b} = (xE_{\rm Mo} + yE_{\rm S} - E_{\rm MoxSy})/(x+y) \tag{1}$$

$$E_{\rm c} = (E_{\rm MoxSy} - xE_{\rm Mo} - yE_{\rm S})/(x+y)$$
 (2)

where x and y are the numbers of Mo and S atoms. Please note that the E_{Mo} and E_S of Equ. (1) are the energy of Mo and S atoms in their most stable states.^{1, 2} Unlike the Equ. (1), E_{Mo} and E_S in Equ. (2) are the energy of isolated Mo and S atoms, respectively.³ The energy of isolated Mo/S atoms are calculated by a symmetry broken spin polarized method in a slightly non-cubic cells, 12 Å ×13 Å ×14 Å.

Fig. S1 The optimized and relative energy of free-standing Mo_4S_3 structures, (a) $Mo_4(\mu_3-S)_3$, (b) $Mo_4(\mu_2-S)_3$. The Mo and S atoms are denoted by cyan and yellow, respectively.

Fig. S2 The relative energy of Mo_4S_3/CeO_2 structures, (a) $Mo_4(\mu_2-S)_3$ -config. 1, (b) $Mo_4(\mu_2-S)_3$ -config. 2, (c) $Mo_4(\mu_3-S)_3$. The Mo and S atoms are denoted by cyan and yellow, respectively.

Fig. S3 The relative energy of Mo_4S_4/CeO_2 structures, (a) Mo_4S_4 -config.1, (b) Mo_4S_4 -config. 2. The Mo, S atoms are denoted by cyan and yellow, respectively.

Fig. S4 The relative energy of Mo_6S_8/CeO_2 structures, (a) Mo_6S_8 -config. 1, (b) Mo_6S_8 -config. 2, (c) Mo_6S_8 -config. 3. The Mo and S atoms are denoted by cyan and yellow, respectively.

Fig. S5 The relative energy of Mo_3S_4/CeO_2 structures, (a) initial structure, (b) AIMD reconstructed structure.

Table S2. The Bader charge and magnetic moment of inner-layer Ce^{4+} and reduced Ce^{3+} on $Mo_xS_y/CeO_2.$

		Inner-layer Ce ⁴⁺	Reduced Ce ³⁺		
Mo ₃ S ₄ /CeO ₂	Bader charge (e)	9.60	9.92	9.93	9.90
	Magnetic moment (μ_B)	0.00	0.95	0.95	0.95
Mo ₄ S ₃ /CeO ₂	Bader charge (e)	9.60	9.93	9.93	9.93
	Magnetic moment (μ_B)	0.00	0.94	0.95	0.95
Mo ₄ S ₄ /CeO ₂	Bader charge (e)	9.60	9.89	9.86	
	Magnetic moment (μ_B)	0.00	0.95	0.95	

Fig. S6 The optimized structures of Mo_3S_4 /CeO₂ for hydrogen adsorption, (a) μ_2 -S_{b2}, (b) μ_2 -S.

Fig. S7 The PDOS of S_{b1} atom on Mo_3S_4/CeO_2 .

Fig. S8 The PDOS of S_{b1} and Mo_b atoms when interact with the H atoms on Mo_3S_4 /CeO₂.

Fig. S9 The PDOS of Mo_b atom when interacts with the H atoms on Mo_4S_4 /CeO₂.

Fig. S10 The PDOS of (a) Mo_4S_3 , (b) Mo_b atom on Mo_4S_3/CeO_2 , (c) Mo_6S_8 , (d) μ_3 -S atom on Mo_6S_8/CeO_2 . The solid lines represent the PDOS of absorbed Mo_xS_y clusters, and the dotted lines represent the PDOS of free-standing Mo_xS_y clusters.

Fig. S11 The relation between ΔG_{H^*} and the p/d band center of Mo_xS_y/CeO_2 . The p band center of μ_2 -S_{b1-Mo3S4} and μ_2 -S_{b2-Mo3S4} were calculated by performing single-point self-consistent calculations.

Fig. S12 The optimized structures of Mo_xS_y/CeO_2 with two H atoms absorption.

Fig. S13 The calculated reaction pathways with Volmer-Tafel reaction mechanisms of Mo_4S_3/CeO_2 and Mo_6S_8/CeO_2 .

References

- 1. A. Arab and M. Habibzadeh, *Journal of Nanostructure in Chemistry*, 2016, **6**, 111-119.
- 2. K. Gao, X.-R. Zhang, Z.-C. Yu and P.-Y. Huo, *Computational and Theoretical Chemistry*, 2018, **1138**, 168-175.
- 3. D. W. Zhou, J. S. Liu, S. H. Xu and P. Peng, *Physica B: Condensed Matter*, 2010, **405**, 2863-2868.