Supplementary Material

Theoretical Treatment of IO-X (X = N₂, CO, CO₂, H₂O) complexes

S. Marzouk, Y. Ajili, M. Ben El Hadj Rhouma, R. Ben Said, and M. Hochlaf

Figure S1: RCCSD(T)/aug-cc-pVTZ(PP) one-dimensional cuts of the potential energy surfaces of the OI-XY (XY = CO, N₂ and CO₂) complexes along the θ angle as defined in this figure. At linearity all complexes have a ² Π symmetry. The reference energy is that of the separated monomers.

Table S1: Optimized equilibrium geometric parameters (R_i in Å and θ_i degree) of the I-bonded complexes between IO and N_2 , CO, CO₂ or H₂O as computed using PBE0(+D3) and M05-2X(+D3) DFTs in conjunction with the aug-cc-pVTZ(PP) basis set.

	PBE0	PBE0-D3	M05-2X	M05-2X-D3		PBE0	PBE0-D3	M05-2X	M05-2X-D3			
OI-N ₂						OI-CO						
R_1	1.879	1.880	1.903	1.903	R_1	1.125	1.125	1.122	1.122			
R_2	3.326	3.326	3.173	3.229	R_2	3.349	3.348	3.388	3.383			
R ₃	1.089	1.089	1.083	1.083	R ₃	1.878	1.879	1.902	1.902			
θ_1	180.0	180.0	179.7	179.9	θ_1	180.0	180.0	179.9	179.9			
	•	Ol	-CO ₂		OI-H ₂ O							
R_1	1.157	1.157	1.154	1.154	R_1	- ^{a)}	_ a)	2.804	2.796			
R_2	3.234	3.239	3.100	3.102	R_2	- ^{a)}	_ a)	0.958	0.958			
R ₃	1.879	1.879	1.903	1.903	R ₃	_ a)	_ a)	1.909	1.910			
θ_1	180.0	180.0	180.0	180.0	θ_1	- ^{a)}	_ a)	126.5	126.4			
θ_2	179.5	179.5	187.8	188.0	θ_2	- ^{a)}	_ a)	180.0	180.0			
θ_3	180.0	179.9	180.0	180.0								

a) No convergence.

Table S2: Optimized equilibrium geometric parameters (R_i in Å and θ_i degree) of the O-bonded complexes between IO and N_2 , CO, CO₂ or H₂O as computed using PBE0(+D3) and M05-2X(+D3) DFTs in conjunction with the aug-cc-pVTZ(PP) basis set.

	PBE0	PBE0-D3	M05-2X	M05-2X-D3		PBE0	PBE0-D3	M05-2X	M05-2X-D3			
IO-N ₂						ІО-СО						
R_1	1.878	1.877	1.899	1.899	\mathbf{R}_1	1.877	1.877	1.904	1.904			
\mathbf{R}_2	3.483	3.287	3.322	3.167	R ₂	3.207	3.116	3.087	3.030			
R ₃	1.090	1.090	1.084	1.084	R ₃	1.124	1.1243	1.120	1.120			
θ_1	100.0	94.4	87.4	91.1	θ_1	101.3	99.1	108.1	105.8			
θ_2	95.9	100.0	88.6	88.2	θ_2	101.8	101.9	97.4	97.8			
		IO	-CO ₂		IO-H ₂ O							
R_1	2.968	2.909	2.797	2.802	R_1	0.962	0.962	0.960	0.960			
R_2	1.158	1.158	1.155	1.155	R_2	1.970	1.958	2.030	2.022			
R ₃	1.876	1.876	1.896	1.896	R ₃	1.874	1.875	1.8930	1.893			
θ_1	90.7	90.7	90.8	90.7	θ_1	105.1	105.0	105.5	105.4			
θ_2	119.8	116.0	115.6	113.8	θ_2	167.7	166.1	170.5	172.3			
					θ_3	111.4	107.5	106.4	103.6			

Table S3: Non-vanishing spin-orbit integrals (SO, cm⁻¹) in Cartesian coordinates of OI-CO(X²Π), OI- $N_2(X^2\Pi)$, OI-H₂O and IO-H₂O complexes at equilibrium.

Complex	Integral	SO
OI-CO $(X^2\Pi)$	$i < X^2 \Pi L_z S_z X^2 \Pi >$	-33.4 ^{a)}
OI-N2 (Х ² П)	$i < X^2 \Pi L_z S_z X^2 \Pi >$	-7.4 ^{a)}
IO-N ₂	$i < 1^{2}A'' L_{x}S_{x} 1^{2}A'' >$	-0.1 ^{a)}
	$<1^{2}A' L_{v}S_{v} 1^{2}A''>$	6.6 ^{a)}
	$i < 1^{2}A' L_z S_z 1^{2}A'' >$	-1.75 ^{a)}
IO-H ₂ O	$i < 1^{2}A' L_{x}S_{x} 1^{2}A' >$	-49.3 b)
	$i < 1^{2}A'' L_{x}S_{x} 1^{2}A'' >$	-1.2 ^{b)}
	$<1 {}^{2}A' L_{y}S_{y} 1 {}^{2}A''>$	8.1 ^{b)}
	$i < 1^{2}A' L_z S_z 1^{2}A'' >$	-47.4 ^{b)}
OI-H ₂ O	$i < 1^{2}B_{1} LzSz 1^{2}B_{2}>$	-5.8 ^{b)}

- a) Computed at the full valence CASSCF/aug-cc-pVTZ(PP) level.
 b) Computed at the full valence CASSCF/aug-cc-pVDZ(PP) level.

Table S4: Vibrational frequencies (v_i in cm⁻¹) of the I-bonded complexes between IO and X (X = N₂, CO, CO₂, H₂O) as computed using PBE0(+D3) and M05-2X(+D3) DFTs in conjunction with the aug-cc-pVTZ(PP) basis set. For sake of simplicity, the modes are numbered by increasing energy.

Mode	PBE0	PBE0-D3	M05-2X	M05-2X-D3	Mode	PBE0	PBE0-D3	M05-2X	M05-2X-D3		
OI-N ₂						OI-CO					
υ_1	32	30	- ^{a)}	_ a)	υ_1	24	23.80	- ^{a)}	- ^{a)}		
υ_2	32	31	23	17	υ_2	28	27	20	37		
υ_3	53	58	66	62	υ_3	50	55	22	37		
υ_4	84	79	102	93	υ_4	57	57	61	61		
υ_5	88	88	107	98	υ_5	65	65	115	134		
υ_6	691	691	650	648	υ_6	691	694	642	643		
υ_7	2482	2483	2556	2556	υ_7	2224	2224	2267	2268		
		OI-0	C O 2		OI-H ₂ O						
υ_1	21	20	_ a)	_ a)	υ_1	_b)	_ b)	74	69		
υ_2	21	20	16	16	υ_2	_b)	_ b)	82	84		
υ_3	48	47	33	30	υ_3	_b)	_ b)	149	151		
υ_4	48	49	46	45	υ_4	_b)	_ b)	201	182		
υ_5	60	59	71	72	υ_5	_b)	_ b)	293	290		
υ_6	681	682	653	652	υ_6	_b)	_ b)	636	638		
υ_7	682	682	697	697	υ_7	_b)	_ b)	1612	1608		
υ_8	693	692	697	697	υ_8	_b)	_ b)	3860	3862		
v_9	1395	1394	1410	1410	υ_9	_b)	_ b)	3960	3963		
υ_{10}	2449	2449	2443	2443							

a) Imaginary frequency.

b) No convergence.

Table S5: Vibrational frequencies (v_i in cm⁻¹) of the O-bonded complexes between IO and X (X = N₂, CO, CO₂, H₂O) as computed using PBE0(+D3) and M05-2X(+D3) DFTs in conjunction with the aug-cc-pVTZ(PP) basis set. For sake of simplicity, the modes are numbered by increasing energy.

Mode	PBE0	PBE0-D3	M05-2X	M05-2X-D3	Mode	PBE0	PBE0-D3	M05-2X	M05-2X-D3			
IO-N ₂						ІО-СО						
υ_1	12	20	29	34	υ_1	24	24	20	37			
υ_2	16	32	43	48	υ_2	26	40	22	37			
υ_3	24	33	54	73	υ_3	42	51	61	61			
υ_4	39	54	66	95	υ_4	88	100	115	134			
υ_5	697	696	648	652	υ_5	698	698	642	643			
υ_6	2480	2480	2549	2551	υ_6	2233	2233	2267	2268			
		IO-0	C O 2		IO-H ₂ O							
υ_1	16	24	41	52	υ_1	35	41	38	39			
υ_2	31	34	66	70	υ_2	158	165	157	161			
υ_3	59	71	88	93	υ_3	260	266	311	319			
υ_4	100	111	137	138	υ_4	299	303	329	323			
υ_5	673	671	642	645	υ_5	335	346	397	383			
υ_6	685	686	688	689	υ_6	708	707	625	624			
υ_7	702	701	704	705	υ_7	1650	1653	1635	1636			
υ_8	1390	1390	1405	1405	υ_8	3778	3773	3812	3812			
v 9	2442	2441	2433	2432	v 9	3892	3888	3910	3910			

a) Low frequency mode.