Supplementary Material

On the effects of induced polarizability at the water-graphene interface

via classical charge-on-spring models

Yerko Escalona, 1 Nicolas Espinoza, 2,3 Mateo Barria-Urenda, 2,3 Chris Oostenbrink, 1 and Jose Antonio Garate^{2, 3, [a\)](#page-0-0)}

 $1)$ Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria

 $^{2)}$ Centro Interdisciplinario de Neurociencia de Valparaíso (CINV),

Universidad de Valparaíso, Valparaíso, Chile

 $3)$ Millennium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso, Chile.

(Dated: 17 January 2022)

a)Author to whom correspondence should be addressed.

email: jose.garate@uv.cl

	δ	$\alpha (10^{-3}$ nm ³)	Q_{pol}
$O_{\rm COS/G2-D2}$	-1.0530	$1.1\,$	± 8
$H_{\rm COS/G2-D2}$	0.5265	0	0
O_{SPC}	-0.8200	0	0
$_{\rm HSPC}$	0.4100	0	Ω
C_{CCCP}	$\left(\right)$	1.1	± 8
$C_{\rm CCC}$	0	∩	0

TABLE S1. Polarizability and charge properties of the models employed

TABLE S2. Lennard-Jones potential parameters

	$\varepsilon(kJ/mol)$	$\sigma(nm)$
$C-OSPC$	0.425	0.337
$C-OCOS/G2$	0.460	0.338
$C-OCOS/D2$	0.474	0.337

FIG. S1. Water oxygen (ρ_O) and hydrogen (ρ_H) density for hybrid systems. In A and D, ρ_O and ρ_H profiles, respectively for the CCC-SPC, CCC-COSG2, CCCP-SPC and CCCP-COSG2 systems. B and E present ρ_O and ρ_H under the effects of external electric fields for the CCC-COS/G2. B and E present ρ_O and ρ_H under the effects of external electric fields for the CCCP-COS/G2.

FIG. S2. Water dynamics of interfaced waters. A shows the survival probability of waters in the interface with graphene for the systems: CCC-SPC (light blue line), CCC-COSG2 (blue line), CCCP-SPC (light red) and CCCP-COSG2 (red line); and for the SPC (grey line) and COS/G2 (black line) waters in the bulk, which correspond to the outer layer of water with respect to the graphene. B and C correspond to the survival probability of waters in the interface with graphene at different electric field strenght condition $(0.001, 0.005, 0.01$ and $0.05 e/nm^2)$ for the systems CCCP-SPC and CCCP-COSG2, respectively. D shows the mean squared displacement of interfacial water in the xy axis for the different systems and the bulk. \bf{E} and \bf{F} shows the same but with different electric field strengths for the CCCP-SPC and CCCP-COSG2 systems, respectively. G shows the rotational relaxation curve of the dipole vector in the interfaced waters with graphene for the different systems and for waters in the bulk region. H and I shows the same in different electric field strength condition for the CCCP-SPC and CCCP-COSG2 systems, respectively.

FIG. S3. Time series of Water contact angle (WCA) for combinations of polarizable and fixed charged models: CCC-SPC (light blue), CCC-COS/G2 (blue), CCC-COS/D2 (dark blue), CCCP-SPC (light red), CCCP-COS/G2 (red), CCCPD-SPC (light green) and CCCPD-COS/D2 (green)

FIG. S4. Representative plots employed to compute WCA. In A, number densities as function of the radial distance along the x-y plane, for the first bin along the z axis. In B, radial distance along the x-y plane as function of the z axis. In blue and green computed data and non-lineal fits, respectively.

FIG. S5. Water oxygen (ρ_O) and hydrogen (ρ_H) density and dipolar orientation (P1) profiles along the graphene normal for the CCCP-COSG2 system employing different thermostats. In A, B and C, $\rho_O, \, \rho_H$ and P1 profiles, respectively.

FIG. S6. Water dipolar alignment along the graphene normal for simulated systems; A, P1 values employing the Nosé-Hoover thermostat; B, P1 values employing the Berendsen thermostat.

FIG. S7. Water oxygen (ρ_O) and hydrogen (ρ_H) density and dipolar orientation (P1) profiles along the graphene normal for the CCC-SPC/E, CCCP-SCP/E, CCC-TIP3P and CCCP-TIP3P systems. In A,C and E, ρ_O , ρ_H and P1 profiles for the SCP/E model, respectively. In B, D and F, ρ_O , ρ_H and P1 profiles for the TIP3P model, respectively.