Supplementary Material

On the effects of induced polarizability at the water-graphene interface

via classical charge-on-spring models

Yerko Escalona,¹ Nicolas Espinoza,^{2, 3} Mateo Barria-Urenda,^{2, 3} Chris Oostenbrink,¹ and Jose Antonio Garate^{2, 3, a)}

¹⁾Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria

²⁾ Centro Interdisciplinario de Neurociencia de Valparaíso (CINV),

Universidad de Valparaíso, Valparaíso, Chile

³⁾ Millennium Nucleus in NanoBioPhysics (NNBP), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso, Chile.

(Dated: 17 January 2022)

^{a)}Author to whom correspondence should be addressed. email: jose.garate@uv.cl

	δ	$\alpha(10^{-3} \mathrm{nm}^3)$	$\mathrm{Q}_{\mathrm{pol}}$
O _{COS/G2-D2}	-1.0530	1.1	± 8
$\rm H_{\rm COS/G2\text{-}D2}$	0.5265	0	0
O_{SPC}	-0.8200	0	0
$\mathrm{H}_{\mathrm{SPC}}$	0.4100	0	0
C_{CCCP}	0	1.1	± 8
C_{CCC}	0	0	0

TABLE S1. Polarizability and charge properties of the models employed

TABLE S2. Lennard-Jones potential parameters

	$\varepsilon \left(kJ/mol ight)$	$\sigma\left(nm\right)$
C-O _{SPC}	0.425	0.337
$C-O_{COS/G2}$	0.460	0.338
$C-O_{COS/D2}$	0.474	0.337

FIG. S1. Water oxygen (ρ_O) and hydrogen (ρ_H) density for hybrid systems. In A and D, ρ_O and ρ_H profiles, respectively for the CCC-SPC, CCC-COSG2, CCCP-SPC and CCCP-COSG2 systems. B and E present ρ_O and ρ_H under the effects of external electric fields for the CCC-COS/G2. B and E present ρ_O and ρ_H under the effects of external electric fields for the CCCP-COS/G2.

FIG. S2. Water dynamics of interfaced waters. **A** shows the survival probability of waters in the interface with graphene for the systems: CCC-SPC (light blue line), CCC-COSG2 (blue line), CCCP-SPC (light red) and CCCP-COSG2 (red line); and for the SPC (grey line) and COS/G2 (black line) waters in the bulk, which correspond to the outer layer of water with respect to the graphene. **B** and **C** correspond to the survival probability of waters in the interface with graphene at different electric field strenght condition (0.001, 0.005, 0.01 and 0.05 e/nm^2) for the systems CCCP-SPC and CCCP-COSG2, respectively. **D** shows the mean squared displacement of interfacial water in the xy axis for the different systems and the bulk. **E** and **F** shows the same but with different electric field strengths for the CCCP-SPC and CCCP-COSG2 systems, respectively. **G** shows the rotational relaxation curve of the dipole vector in the interfaced waters with graphene for the different systems and for waters in the bulk region. **H** and **I** shows the same in different electric field strength condition for the CCCP-SPC and CCCP-COSG2 systems, respectively.

FIG. S3. Time series of Water contact angle (WCA) for combinations of polarizable and fixed charged models: CCC-SPC (light blue), CCC-COS/G2 (blue), CCC-COS/D2 (dark blue), CCCP-SPC (light red), CCCP-COS/G2 (red), CCCPD-SPC (light green) and CCCPD-COS/D2 (green)

FIG. S4. Representative plots employed to compute WCA. In A, number densities as function of the radial distance along the x-y plane, for the first bin along the z axis. In B, radial distance along the x-y plane as function of the z axis. In blue and green computed data and non-lineal fits, respectively.

FIG. S5. Water oxygen (ρ_O) and hydrogen (ρ_H) density and dipolar orientation (P1) profiles along the graphene normal for the CCCP-COSG2 system employing different thermostats. In A, B and C, ρ_O , ρ_H and P1 profiles, respectively.

FIG. S6. Water dipolar alignment along the graphene normal for simulated systems; A, P1 values employing the Nosé-Hoover thermostat; B, P1 values employing the Berendsen thermostat.

FIG. S7. Water oxygen (ρ_O) and hydrogen (ρ_H) density and dipolar orientation (P1) profiles along the graphene normal for the CCC-SPC/E, CCCP-SCP/E, CCC-TIP3P and CCCP-TIP3P systems. In A,C and E, ρ_O , ρ_H and P1 profiles for the SCP/E model, respectively. In B, D and F, ρ_O , ρ_H and P1 profiles for the TIP3P model, respectively.