Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information for "Modulation of thermal conductivity, interlayer thermal resistance, and interfacial thermal conductance of C_2N "

Jieren Song*a, Xingang Lianga, Zhonghai Xu*b, Xiaodong Heb

- ^a Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- ^b National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.

S1. Phonon dispersion of C₂N

Fig.S1. Phonon dispersion of C₂N

Three acoustic branches, including the longitudinal acoustic (LA), transverse acoustic (TA), and out-of-plane acoustic (ZA) phonon mode are in agreement with the DFT results of Tao et al. As shown in the inset of Fig.S1, near the Γ point in the center of the Brillouin zone, the LA and TA modes are linearly distributed, while the ZA mode is quadratically distributed, similar to graphene.

S2. Temperature distribution in the C₂N/C-C₂N heterostructure

Fig. S2. Temperature distribution in the $C_2N/C-C_2N$ heterostructure along the heat flux direction.

S3. Width effects on k_i

Fig.S3. The influence of model widths ranging from 3 to 15 nm on k_i

S4. Primitive cell of C₂N

Fig.S4. Atomic structure of graphene and C₂N. The 18-atoms unit cell of C₂N and the 24-atoms unit cell of graphene are shown.

S5. Geometric optimization of models for C and N atomic defects

Fig.S5. Geometric optimization of C₂N with C and N defects.

DFT calculations are performed as implemented in CASTEP using the Perdew-Burke-Enzerhof generalized gradient approximation exchange-correlation functional. The energy cutoff is 400 eV.

S6. Stress-strain curve

Fig. S6. Engineering stress-strain response of bilayer C₂N in AA- and AB- stacking.

S7. Stress distributions of C₂N/C-C₂N heterostructures

Fig. S7. Stress distributions of $C_2N/C-C_2N$ heterostructures at the AC-1 and ZZ-3 interfaces.