Structural Study of 1- and 2-Naphthol: New Insights into the Non-covalent H-H Interaction in *cis*-1-Naphthol

Arsh S. Hazrah,^a Sadisha Nanayakkara,^b Nathan A. Seifert,^{a,c} Elfi Kraka,^b and Wolfgang Jäger ^a*

Electronic Supplementary Information

Contents:

- 1. Spectroscopic Parameters, Spectra, and Conversion Pathway for 1- and 2-naphthol
 - a. Table S1. Spectroscopic parameters for the naphthol isomers
 - b. **Figure S1.** Broadband rotational spectra of 1- and 2-naphthol
 - c. Figure S2. Potential energy curves and zero-pointed corrected barriers for 1- and 2-naphthol
- 2. Rotational Transition Frequencies for Parent Species (Pages 6-12)
 - a. **Table S2.** Assigned rotational transitions for *cis*-1-naphthol
 - b. **Table S3.** Assigned rotational transitions for *trans*-1-naphthol
 - c. **Table S4.** Assigned rotational transitions for *cis*-2-naphthol
 - d. Table S5. Assigned rotational transitions for trans-2-naphthol
- 3. Rotational Transition Frequencies for ¹³C Isotopologues (Pages 13-22)
 - a. Table S6. Assigned rotational transitions for *cis*-1-naphthol ¹³C isotopologues
 - b. **Table S7.** Assigned rotational transitions for *trans*-1-naphthol ¹³C isotopologues
 - c. Table S8. Assigned rotational transitions for *cis*-2-naphthol ¹³C isotopologues
 - d. **Table S9.** Assigned rotational transitions for *trans*-2-naphthol ¹³C isotopologues
- 4. Rotational and Centrifugal Distortion Constants for ¹³C Isotopologues (Pages 23-26)
 - a. Table S10. Rotational transitions for ¹³C isotopologues of *cis*-1-naphthol
 - b. Table S11. Rotational transitions for ¹³C isotopologues of *trans*-1-naphthol
 - c. Table S12. Rotational transitions for ¹³C isotopologues of *cis*-2-naphthol
 - d. Table S13. Rotational transitions for ¹³C isotopologues of *trans*-2-naphthol
- 5. Structural Parameters (Pages 27-28)
 - a. Table S14. Structural parameters for *cis*-1-naphthol
 - b. Table S15. Structural parameters for trans-1-naphthol
 - c. Table S16. Structural parameters for cis-2-naphthol
 - d. **Table S17.** Structural parameters for *trans*-2-naphthol
- 6. AIMA11 (Page 29-30)
 - a. Table S18. Data from AIMA11 QTAIM calculations
 - b. **Table S19.** *Cis*-1-naphthol theoretical method comparison
- 7. Semi-experimental Rotational Frequencies for ¹²C and ¹³C Isotopologues (Pages 31-33)
 - a. Table S20. Semi-experimental rotational constants for parent species
 - b. **Table S21.** Semi-experimental rotational constants for *cis*-1-naphthol ¹³C isotopologues
 - c. Table S22. Semi-experimental rotational constants for trans-1-naphthol ¹³C isotopologues
 - d. Table S23. Semi-experimental rotational constants for cis-2-naphthol ¹³C isotopologues
 - e. Table S24. Semi-experimental rotational constants for trans-2-naphthol ¹³C isotopologues
- 8. Non-Covalent Interactions (Page 34-35)
 - a. Figure S3. Non-covalent interactions plot of naphthol conformers
 - b. Figure S4. Non-covalent interactions plot of equilibrium and planar geometries of biphenyl
- 9. Local Mode Analysis (Pages 36-39)
 - a. Figure S5. Decomposition plot for all normal modes of *cis*-1-naphthol
 - b. Figure S6. Decomposition plot for all normal modes of trans-1-naphthol

- c. Figure S7. Vibrational displacement vectors for the O-H stretching motion
- d. Table S25. Local Mode Force Constants and Local Mode Frequencies

10. Inertial Defect Differences (Pages 40-46)

- a. Table S26. Moment of inertia and Inertial defect values for calculated and experimental results
- b. Table S27. Calculated inertial defect values obtained from Oka's equation
- c. Table S28. Inertial defect differences between calculated and experimental defect values
- d. Table S29. Lowest out-of-plane modes for naphthol isomers and previous work
- e. Figure S8. Lowest out-of-plane vibrational modes for cis-1-naphthol
- f. Figure S9. Lowest out-of-plane vibrational modes for *trans*-1-naphthol
- g. **Figure S10.** Lowest out-of-plane vibrational modes for *cis*-2-naphthol
- h. Figure S11. Lowest out-of-plane vibrational modes for *trans*-2-naphthol
- i. Figure S12. Inertial defect differences for the four isomers of naphthol compared to the results of Jahn et al.

11. Charge Model 5 (Pages 47-49)

- a. Figure S13. Atom labelling used in the description of the naphthol H-H interaction
- b. Figure S14. CM5 charges for atoms involved in the naphthol H-H interaction
- c. Figure S15. CM5 charges for atoms involved in the biphenyl H-H interaction
- d. Table S30. Net CM5 charge change for naphthol and biphenyl

12. NBO Analysis (Pages 50-53)

- a. Table S31. Bonding and antibonding orbital occupancy
- b. Table S32. Interaction Energies between bonding and antibonding orbitals for trans-1-naphthol
- c. **Table S33.** Interaction Energies between bonding and antibonding orbitals for *cis*-1-naphthol
- d. Table S34. Interaction Energies between bonding and antibonding orbitals for *trans*-2-naphthol
- e. **Table S35.** Interaction Energies between bonding and antibonding orbitals for *cis*-2-naphthol
- f. Figure S16. Heavy atom steric exchange and donor-acceptor interaction energies
- g. Table S36. Cis-1-naphthol theoretical method comparison

Spectroscopic Parameters, Spectra, and Conversion Pathway for 1- and 2naphthol

	cis-1-naphthol	cis-1-naphthol ^a	trans-1-naphthol	trans-1-naphthol ^{a,c}
	(B3LYP-D3(BJ)/def2-TZVP)	(experiment)	(B3LYP-D3(BJ)/def2-TZVP)	(experiment)
A /MHz	1959.8594	1947.51340(61)	1955.1739	1942.10135(21)
В	1130.8399	1124.307930(90)	1139.0560	1133.623460(88)
С	717.1278	713.096200(63)	719.7438	716.017810(49)
Δ, /kHz	0.05262	[0.0136] ^b	0.05331	0.01810(70)
Δ _{JK}	-0.08807	[0.0409] ^b	-0.09152	0.0240(35)
Δκ	0.04032	0.30(12)	0.04306	0.059(20)
δι	0.01201	0.00382(21)	0.01177	0.00630(34)
δκ	-0.01278	0.0440(98)	-0.01482	0.0355(19)
N	-	60	-	117
σ /kHz	-	2.1	-	2.2
ΔE₀ / kJ mol⁻¹	3.3	-	0.0	-
∆/amu Ų	-0.0443	-0.2925(2)	0.0001	-0.2124(2)
μ / D	μ_a =1.4, μ_b =0.3, μ_c =0.1	$\mu_a > \mu_b$	μ_a =1.2, μ_b =0.1, μ_c =0.0	$\mu_a > \mu_b$
	cis-2-naphthol	cis-2-naphthol ^c	trans-2-naphthol	trans-2-naphthol
	(B3LYP-D3(BJ)/def2-TZVP)	(experiment)	(B3LYP-D3(BJ)/def2-TZVP)	(experiment)
A /MHz	2870.7044	2849.15700(28)	2868.6589	2845.35720(37)
В	828.9859	824.63285(12)	829.6421	825.5363521(13)
С	643.2358	639.72412(11)	643.5280	640.087128(16)
Δ, /kHz	0.00797	0.0130(27)	0.00793	0.00706(17)
Δ _{JK}	0.01426	[0.014844] ^d	0.01508	[0.015080] ^e
Δκ	0.18312	0.170(29)	0.18328	0.2615(17)
δι	0.00200	0.00260(60)	0.00197	0.00180(92)
δκ	0.02966	[0.030525] ^d	0.02969	[0.02969] ^e
Ν	-	41	-	49
σ /kHz	-	1.4	-	2.7
ΔE₀ / kJ mol ⁻¹	0.0	-	2.1	-
Λ/amu Å ²				
A) ana A	0.0001	-0.2366(2)	0.0000	-0.251(1)
μ / D	0.0001 μa=0.2, μb=1.0, μc=0.1	-0.2366(2) μ _b > μ _a	0.0000 μa=0.6, μb=1.4, μc=0.0	-0.251(1) μ _b > μ _a

Table S1. Spectroscopic parameters for the naphthol isomers from theory and from fits of experimental data.

^a assigned rotational transitions from Whitham et al.²⁰ are included in fit.

^b fixed at the values from Whitham et al. ²⁰

^c note that the spectroscopic constants derived by Goubet et al.²¹ for *trans*-1-naphthol and *cis*-2-naphthol have significantly higher accuracy than the values reported here because of the much larger number of transitions in the fits. Unfortunately, their transition frequencies are not published, so that they were not included in our fits.

^c fixed at the values from Goubet et al.²¹

^d fixed at the values from theory.

Figure S1. Broadband rotational spectra of 1-naphthol (top) and 2-naphthol (bottom). The experimental spectra are in black, while the red and blue spectra represent the simulated spectra for the *trans*- and *cis*-conformer, respectively.

Figure S2. Potential energy curves and zero-pointed corrected *cis-trans* barriers for 1-naphthol (top) and 2-naphthol (bottom), calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.

J	K _a '	K _c '	J''	K _a ''	K _c ''	v _{Exp} / MHz	Δvª/ MHz
1	0	1	0	0	0	1837.398	-0.007
5	2	3	5	2	4	2668.247	-0.001
2	1	2	1	1	1	3263.597	-0.002
2	0	2	1	0	1	3555.025	-0.002
4	1	3	4	1	4	3960.015	0.007
2	1	1	1	1	0	4086.020	0.001
2	1	2	1	0	1	4086.800	-0.004
2	2	1	2	0	2	4235.020	-0.005
6	2	4	6	2	5	4289.167	-0.007
3	2	2	3	0	3	4659.584	0.001
3	1	3	2	1	2	4828.862	-0.002
3	0	3	2	0	2	5087.650	-0.003
4	2	3	4	0	4	5417.279	0.002
3	2	2	2	2	1	5512.212	-0.000
5	1	4	5	1	5	5623.450	0.005
3	2	1	2	2	0	5936.774	0.001
3	1	2	2	1	1	6039.545	-0.001
4	1	4	3	1	3	6341.026	-0.003
4	0	4	3	0	3	6496.777	-0.001
4	2	3	3	2	2	7254.472	0.001
5	1	5	4	1	4	7812.217	0.005
4	1	3	3	1	2	7856.723	-0.001
5	0	5	4	0	4	7884.514	0.006
6	1	6	5	1	5	9258.636	0.004
5	1	4	4	1	3	9475.640	-0.008
5	3	2	4	3	1	9809.353	0.001

Rotational Transition Frequencies

Table S2. Measured frequencies of assigned rotational transitions of *cis*-1-naphthol. Δv^a is the difference between observed and calculated frequencies.

Ka'' K_a' $K_{c}^{\prime\prime}$ J' J'' v_{Exp}/MHz $\Delta v^{a}/MHz$ K_c' 1849.640 -0.001 2457.272 -0.002 2481.055 -0.000 2550.181 -0.001 2658.118 -0.001 2726.881 0.003 2740.972 0.002 2754.832 -0.001 2766.057 0.002 3281.677 -0.000

Table S3. Measured frequencies of assigned rotational transitions of *trans*-1-naphthol. Δv^a is the difference between observed and calculated frequencies.

5	2	3	5	1	4	3484.039	-0.003
2	0	2	1	0	1	3574.533	-0.001
3	1	2	2	2	1	3656.192	-0.000
2	2	1	2	1	2	3678.248	-0.001
4	1	3	4	1	4	4013.698	-0.001
2	1	2	1	0	1	4090.154	-0.001
2	1	1	1	1	0	4116.887	-0.001
4	1	3	4	0	4	4123.074	0.000
4	3	1	4	2	2	4171.805	-0.002
2	2	1	2	0	2	4193.869	-0.001
3	2	2	3	1	3	4373.798	0.013
6	2	4	6	2	5	4387.622	-0.001
8	3	5	8	3	6	4487.575	-0.004
3	0	3	2	1	2	4593.506	-0.000
3	3	0	3	2	1	4615.560	0.001
3	2	2	3	0	3	4633.665	-0.001
6	2	4	6	1	5	4751.213	-0.000
3	1	3	2	1	2	4853.387	0.001
3	0	3	2	0	2	5109.127	-0.001
3	3	1	3	2	2	5155.527	-0.001
4	2	3	4	1	4	5302.553	-0.003
3	1	3	2	0	2	5369.008	0.000
4	2	3	4	0	4	5411.929	-0.002
4	3	2	4	2	3	5447.473	-0.006
3	2	2	2	2	1	5548.922	-0.000
5	1	4	5	1	5	5686.213	-0.002
5	1	4	5	0	5	5727.304	-0.003
5	3	3	5	2	4	5958.694	0.001
3	2	1	2	2	0	5988.718	0.001
4	1	3	3	2	2	6010.509	-0.001
3	1	2	2	1	1	6081.625	-0.001
7	2	5	7	2	6	6223.969	0.002
4	0	4	3	1	3	6261.220	-0.001
4	1	4	3	1	3	6370.596	-0.000
7	2	5	7	1	6	6380.619	0.009
5	2	4	5	1	5	6429.283	-0.003
5	2	4	5	0	5	6470.377	-0.001
4	0	4	3	0	3	6521.101	-0.001
2	2	1	1	1	0	6542.319	-0.002
4	1	4	3	0	3	6630.474	-0.002
5	3	3	5	1	4	6701.765	-0.001
4	3	2	4	1	3	6736.338	0.002
2	2	0	1	1	1	7084.677	0.002

4	2	3	3	2	2	7299.366	-0.000
6	1	5	6	1	6	7336.284	-0.001
4	3	2	3	3	1	7591.315	-0.002
6	2	5	6	0	6	7714.264	-0.001
4	3	1	3	3	0	7729.093	0.001
5	1	5	4	1	4	7846.416	-0.001
2	2	0	1	0	1	7893.159	0.006
4	1	3	3	1	2	7903.243	0.004
5	0	5	4	0	4	7914.702	0.002
5	1	5	4	0	4	7955.792	0.000

J'	Ka'	K _c '	J''	K _a ''	K _c ''	v _{Exp} / MHz	Δv^{a} / MHz
1	1	0	1	0	1	2209.433	0.001
2	1	1	2	0	2	2406.436	-0.001
3	0	3	2	1	2	2493.315	-0.001
3	1	2	3	0	3	2724.020	0.001
2	1	2	1	1	1	2743.806	0.002
2	0	2	1	0	1	2916.615	-0.002
2	1	1	1	1	0	3113.621	-0.001
4	1	3	4	0	4	3186.057	-0.001
4	3	1	5	2	4	3332.956	0.003
1	1	1	0	0	0	3488.881	0.001
5	1	4	5	0	5	3817.735	-0.002
3	1	3	2	1	2	4108.378	-0.001
4	0	4	3	1	3	4124.399	-0.001
6	1	5	5	2	4	4210.154	0.000
3	0	3	2	0	2	4345.026	-0.000
3	2	2	2	2	1	4393.069	-0.000
3	2	1	2	2	0	4441.112	-0.000
3	3	1	4	2	2	4566.116	-0.003
6	1	5	6	0	6	4637.525	0.002
3	1	2	2	1	1	4662.609	0.000
3	3	0	4	2	3	4744.698	0.001
2	1	2	1	0	1	4768.330	0.002
6	2	4	6	1	5	5302.829	-0.002
7	2	5	7	1	6	5305.223	-0.004
5	2	3	5	1	4	5425.342	-0.000
4	1	4	3	1	3	5464.836	0.001
8	2	6	8	1	7	5468.910	-0.003
4	2	2	4	1	3	5628.617	-0.000
7	1	6	7	0	7	5648.833	0.000
4	0	4	3	0	3	5739.464	0.001
5	0	5	4	1	4	5753.640	0.001
9	2	7	9	1	8	5822.737	-0.001
4	2	3	3	2	2	5848.006	-0.000
3	2	1	3	1	2	5864.169	0.001
4	3	2	3	3	1	5880.199	0.002
4	3	1	3	3	0	5883.163	-0.001
3	1	3	2	0	2	5960.089	-0.001
4	2	2	3	2	1	5965.948	-0.003

Table S4. Measured frequencies of assigned rotational transitions of *cis*-2-naphthol. Δv^a is the difference between observed and calculated frequencies.

4 1 3 3 1 2 6201.504 0.003 2 2 1 2 1 2 6628.296 0.001	2	2	0	2	1	1	6085.668	0.004
2 2 1 2 1 2 6628.296 0.001	4	1	3	3	1	2	6201.504	0.003
	2	2	1	2	1	2	6628.296	0.001

J'	Ka'	K _c '	J''	K _a ''	K _c ''	v _{Exp} / MHz	Δv ^a / MHz
1	1	0	1	0	1	2205.270	0.000
5	1	4	4	2	3	2298.211	-0.010
2	1	1	2	0	2	2402.909	-0.002
3	0	3	2	1	2	2501.886	0.001
2	2	0	3	1	3	2516.691	0.004
3	1	2	3	0	3	2721.618	-0.002
8	2	6	7	3	5	2728.994	0.005
2	1	2	1	1	1	2745.798	0.001
4	3	2	5	2	3	2892.790	0.004
2	0	2	1	0	1	2919.051	-0.003
7	4	3	8	3	6	2919.739	-0.003
2	1	1	1	1	0	3116.697	0.002
4	1	3	4	0	4	3185.433	-0.004
4	3	1	5	2	4	3305.007	-0.005
1	1	1	0	0	0	3485.444	0.001
5	1	4	5	0	5	3819.652	-0.009
3	1	3	2	1	2	4111.311	0.001
4	0	4	3	1	3	4134.196	0.000
6	1	5	5	2	4	4235.301	-0.008
6	4	3	7	3	4	4310.392	-0.002
3	0	3	2	0	2	4348.448	0.001
3	2	2	2	2	1	4396.869	0.000
6	4	2	7	3	5	4413.621	0.006
3	2	1	2	2	0	4445.291	0.000
3	3	1	4	2	2	4537.629	0.001
6	1	5	6	0	6	4642.702	-0.010
3	1	2	2	1	1	4667.156	0.000
3	3	0	4	2	3	4717.604	0.007
2	1	2	1	0	1	4765.619	0.003
9	2	7	8	3	6	4836.036	-0.031
6	2	4	6	1	5	5290.499	-0.006
7	2	5	7	1	6	5295.399	-0.010
5	2	3	5	1	4	5411.525	-0.003
8	2	6	8	1	7	5462.669	-0.016
4	1	4	3	1	3	5468.650	0.004
4	2	2	4	1	3	5614.197	-0.001
7	1	6	7	0	7	5657.738	-0.021
4	0	4	3	0	3	5743.622	0.001

Table S5. Measured frequencies of assigned rotational transitions of *trans*-2-naphthol. Δv^a is the difference between observed and calculated frequencies.

5	0	5	4	1	4	5764.281	0.002
9	2	7	9	1	8	5821.179	-0.021
3	2	1	3	1	2	5849.785	0.001
4	2	3	3	2	2	5852.999	0.000
4	3	2	3	3	1	5885.443	0.003
4	3	1	3	3	0	5888.447	0.002
5	4	1	6	3	4	5909.708	-0.006
3	1	3	2	0	2	5957.873	0.001
4	2	2	3	2	1	5971.849	-0.004
2	2	0	2	1	1	6071.652	0.003
4	1	3	3	1	2	6207.438	0.000
7	1	6	6	2	5	6212.612	-0.008

Rotational Transition Frequencies for ¹³C Isotopologues

J'	Ka'	Kc'	J''	Ka''	K."	v _{Exp} / MHz	Δv ^a / MHz
C1			-	u			
2	1	1	1	1	0	4069.750	0.000
3	0	3	2	0	2	5070.468	0.007
3	1	2	2	1	1	6016.128	-0.020
4	1	4	3	1	3	6318.845	-0.003
C2							
2	0	2	1	0	1	3523.205	-0.010
2	1	1	1	1	0	4041.101	-0.010
2	1	2	1	1	1	3234.272	0.001
3	1	3	2	1	2	4787.668	0.001
3	0	3	2	0	2	5048.596	-0.002
3	2	1	2	2	0	5864.477	0.000
3	1	2	2	1	1	5976.626	0.080
C3							
2	1	2	1	1	1	3235.800	-0.001
2	0	2	1	0	1	3524.722	0.000
2	1	1	1	1	0	4052.38	-0.002
3	1	3	2	1	2	4787.421	0.002
3	0	3	2	0	2	5043.366	0.000
3	2	1	2	2	0	5888.905	-0.002
3	1	2	2	1	1	5989.328	-0.000
4	0	4	3	0	3	6439.765	-0.007
C4							
2	1	2	1	1	1	3250.353	-0.010
2	0	2	1	0	1	3540.305	0.005
2	1	1	1	1	0	4079.394	-0.004
3	1	3	2	1	2	4806.556	0.009
3	0	3	2	0	2	5058.696	-0.003
3	2	2	2	2	1	5497.317	-0.002
3	1	2	2	1	1	6025.395	0.003
4	0	4	3	0	3	6456.079	-0.002
C4a							
2	1	2	1	1	1	3260.108	-0.001
2	0	2	1	0	1	3551.162	-0.002
2	1	1	1	1	0	4083.796	-0.002
3	1	3	2	1	2	4823.105	-0.007

Table S6. Frequencies of rotational transitions of ¹³C isotopologues of *cis*-1-naphthol. Δv^a is the difference between observed and calculated frequencies.

3	2	2	2	2	1	5507.934	0.005
3	1	2	2	1	1	6035.329	-0.000
4	1	4	3	1	3	6332.783	0.005
C5							
2	1	2	1	1	1	3241.183	-0.007
2	0	2	1	0	1	3530.640	0.002
2	1	1	1	1	0	4057.083	-0.002
3	1	3	2	1	2	4795.947	0.000
3	0	3	2	0	2	5053.449	0.003
3	2	2	2	2	1	5473.714	0.008
3	1	2	2	1	1	5997.152	-0.004
4	0	4	3	0	3	6453.439	-0.002
C6							
2	0	2	1	0	1	3510.074	-0.000
2	1	1	1	1	0	4022.589	-0.001
3	1	3	2	1	2	4770.681	0.000
3	0	3	2	0	2	5032.463	-0.000
3	1	2	2	1	1	5950.630	0.001
C7							
2	1	2	1	1	1	3229.464	-0.005
2	0	2	1	0	1	3517.951	-0.003
2	1	1	1	1	0	4037.621	0.005
3	1	3	2	1	2	4779.894	0.002
3	0	3	2	0	2	5039.086	0.002
3	1	2	2	1	1	5970.399	-0.005
3	2	2	2	2	1	5450.315	0.006
C8							
2	1	2	1	1	1	3251.607	0.001
2	0	2	1	0	1	3541.851	0.003
2	1	1	1	1	0	4074.887	0.001
3	1	3	2	1	2	4810.055	0.002
3	0	3	2	0	2	5065.703	-0.001
3	2	2	2	2	1	5494.866	-0.002
3	1	2	2	1	1	6021.397	-0.000
C8a							
2	1	2	1	1	1	3263.166	0.011
2	0	2	1	0	1	3554.530	0.005
3	1	3	2	1	2	4828.066	0.006
3	0	3	2	0	2	5086.512	0.004
3	1	2	2	1	1	6039.271	-0.004
4	1	4	3	1	3	6339.789	-0.012

J'	K _a '	K _c '	J''	K _a ''	K _c ''	v _{Exp} / MHz	Δvª/ MHz
C1							
2	1	2	1	1	1	3269.839	0.001
2	0	2	1	0	1	3561.694	0.001
2	1	1	1	1	0	4100.547	0.001
3	1	3	2	1	2	4836.292	0.001
3	0	3	2	0	2	5091.958	0.000
3	2	2	2	2	1	5527.785	-0.002
3	1	2	2	1	1	6058.148	0.000
4	1	4	3	1	3	6348.641	0.000
4	0	4	3	0	3	6499.734	0.000
C2							
2	1	2	1	1	1	3251.972	0.000
2	0	2	1	0	1	3542.433	0.000
2	1	1	1	1	0	4071.202	-0.001
3	1	3	2	1	2	4811.766	0.001
3	0	3	2	0	2	5069.925	-0.001
3	2	2	2	2	1	5492.377	-0.002
3	1	2	2	1	1	6017.818	0.002
4	1	4	3	1	3	6318.697	0.000
4	0	4	3	0	3	6474.256	0.000
C3							
2	1	2	1	1	1	3253.375	0.000
2	0	2	1	0	1	3543.672	0.001
2	1	1	1	1	0	4082.334	-0.002
3	1	3	2	1	2	4811.267	0.001
3	0	3	2	0	2	5064.260	0.000
3	2	2	2	2	1	5501.783	0.001
3	2	1	2	2	0	5939.306	0.001
3	1	2	2	1	1	6030.160	0.000
4	1	4	3	1	3	6314.995	-0.002
4	0	4	3	0	3	6463.488	0.001
C4							
2	1	2	1	1	1	3268.209	0.001
2	0	2	1	0	1	3559.391	0.000
2	1	1	1	1	0	4110.011	0.000
3	1	3	2	1	2	4830.640	0.001
3	0	3	2	0	2	5079.509	0.000
3	2	2	2	2	1	5533.661	-0.002
3	2	1	2	2	0	5987.817	0.001

Table S7. Frequencies of rotational transitions of ¹³C isotopologues of *trans*-1-naphthol. Δv^a is the difference between observed and calculated frequencies.

3	1	2	2	1	1	6066.888	0.000
4	1	4	3	1	3	6337.451	-0.001
4	0	4	3	0	3	6479.799	0.001
C4a							
2	1	2	1	1	1	3278.135	-0.002
2	0	2	1	0	1	3570.586	-0.001
2	1	1	1	1	0	4114.671	-0.001
3	1	3	2	1	2	4847.529	0.001
3	0	3	2	0	2	5101.715	-0.001
3	2	2	2	2	1	5544.604	-0.001
3	2	1	2	2	0	5987.496	0.002
3	1	2	2	1	1	6077.354	0.000
4	1	4	3	1	3	6362.178	-0.001
4	0	4	3	0	3	6510.838	0.002
C5							
2	1	2	1	1	1	3259.082	0.001
2	0	2	1	0	1	3549.952	-0.001
2	1	1	1	1	0	4087.707	-0.001
3	1	3	2	1	2	4820.199	0.000
3	0	3	2	0	2	5074.657	0.000
3	2	2	2	2	1	5510.088	-0.002
3	2	1	2	2	0	5945.525	0.001
3	1	2	2	1	1	6038.892	0.000
4	1	4	3	1	3	6327.305	-0.001
4	0	4	3	0	3	6477.411	0.002
C6							
2	1	2	1	1	1	3240.063	0.000
2	0	2	1	0	1	3529.528	0.000
2	1	1	1	1	0	4052.926	-0.001
3	1	3	2	1	2	4795.052	0.000
3	0	3	2	0	2	5054.120	-0.001
3	2	2	2	2	1	5469.741	-0.001
3	2	1	2	2	0	5885.364	0.001
3	1	2	2	1	1	5992.234	0.000
4	1	4	3	1	3	6297.835	-0.001
4	0	4	3	0	3	6455.410	0.002
C7							
2	1	2	1	1	1	3247.407	-0.002
2	0	2	1	0	1	3537.398	0.000
2	1	1	1	1	0	4068.086	0.000
3	1	3	2	1	2	4804.307	0.000
3	0	3	2	0	2	5060.666	0.000
3	2	2	2	2	1	5486.620	0.000

3	2	1	2	2	0	5912.574	0.000
3	1	2	2	1	1	6012.090	0.000
4	1	4	3	1	3	6308.065	0.001
4	0	4	3	0	3	6461.422	-0.001
C8							
2	1	2	1	1	1	3269.650	0.000
2	0	2	1	0	1	3561.270	0.000
2	1	1	1	1	0	4105.737	0.000
3	1	3	2	1	2	4834.498	0.000
3	0	3	2	0	2	5087.039	-0.001
3	2	2	2	2	1	5531.539	0.000
3	2	1	2	2	0	5976.037	-0.001
3	1	2	2	1	1	6063.382	0.001
4	1	4	3	1	3	6344.518	0.001
4	0	4	3	0	3	6491.496	0.000
C8a							
2	1	2	1	1	1	3281.250	-0.002
2	0	2	1	0	1	3574.049	-0.001
3	1	3	2	1	2	4852.614	0.000
3	0	3	2	0	2	5108.030	0.000
3	2	2	2	2	1	5548.588	0.001
3	2	1	2	2	0	5989.143	-0.001
3	1	2	2	1	1	6081.364	0.000
4	1	4	3	1	3	6369.417	0.002
4	0	4	3	0	3	6519.511	-0.001

							v _{Exp} /	Δv ^a /
J'	Ka'	K _c '	J''	Ka''	K _c ''		MHz	MHz
C1								
	2	1	1	2	0	2	2389.725	0.017
	4	1	3	4	0	4	3172.361	-0.006
	1	1	1	0	0	0	3467.968	-0.005
	4	0	4	3	1	3	4128.181	0.016
	2	1	2	1	0	1	4743.803	0.000
	5	0	5	4	1	4	5752.625	-0.012
	3	1	3	2	0	2	5931.802	0.000
C2								
	4	1	3	4	0	4	3175.116	-0.010
	1	1	1	0	0	0	3484.749	-0.001
	5	1	4	5	0	5	3797.195	0.007
	4	0	4	3	1	3	4080.998	-0.009
	2	1	2	1	0	1	4757.210	0.006
	5	0	5	4	1	4	5701.479	0.007
	3	1	3	2	0	2	5942.966	-0.003
C3								
	4	1	3	4	0	4	3164.651	0.010
	1	1	1	0	0	0	3462.809	0.000
	5	1	4	5	0	5	3794.545	-0.006
	4	0	4	3	1	3	4106.272	0.000
	3	0	3	2	0	2	4319.604	0.001
	2	1	2	1	0	1	4734.495	-0.007
	3	1	3	2	0	2	5918.868	0.003
C4								
	2	1	1	2	0	2	2367.779	0.012
	4	1	3	4	0	4	3160.057	0.012
	1	1	1	0	0	0	3442.654	-0.011
	5	1	4	5	0	5	3803.144	-0.009
	4	0	4	3	1	3	4154.077	-0.003
	3	0	3	2	0	2	4334.256	-0.008
	2	1	2	1	0	1	4717.144	-0.004
	5	0	5	4	1	4	5776.494	0.008
	3	1	3	2	0	2	5903.128	0.005
C4a								
	2	1	1	2	0	2	2397.935	0.013
	3	1	2	3	0	3	2716.329	0.007
	4	1	3	4	0	4	3179.710	-0.010

Table S8. Frequencies of rotational transitions of ¹³C isotopologues of *cis*-2-naphthol. Δv^a is the difference between observed and calculated frequencies.

	1	1	1	0	0	0	3478.498	-0.001
	4	0	4	3	1	3	4128.773	-0.006
	2	1	2	1	0	1	4756.507	-0.002
	5	0	5	4	1	4	5756.096	0.009
	3	1	3	2	0	2	5946.697	-0.005
C5								
	3	0	3	2	1	2	2486.093	-0.009
	3	1	2	3	0	3	2701.819	-0.005
	4	1	3	4	0	4	3162.801	-0.012
	1	1	1	0	0	0	3459.924	0.007
	5	1	4	5	0	5	3793.203	0.009
	4	0	4	3	1	3	4107.109	0.006
	2	1	2	1	0	1	4731.159	0.006
	5	0	5	4	1	4	5725.785	0.000
	4	0	4	3	0	3	5703.776	0.001
	3	1	3	2	0	2	5915.025	-0.007
C6								
	1	1	0	1	0	1	2214.260	0.008
	2	1	1	2	0	2	2406.207	-0.009
	3	1	2	3	0	3	2715.161	0.011
	4	1	3	4	0	4	3163.862	-0.006
	1	1	1	0	0	0	3479.655	-0.007
	5	1	4	5	0	5	3776.733	0.000
	4	0	4	3	1	3	4038.624	-0.014
	3	0	3	2	0	2	4292.009	-0.011
	2	1	2	1	0	1	4745.078	0.010
	5	0	5	4	1	4	5650.256	0.018
	3	1	3	2	0	2	5924.750	-0.005
C7								
	3	1	2	3	0	3	2705.361	-0.008
	4	1	3	4	0	4	3158.752	0.010
	1	1	1	0	0	0	3466.034	0.006
	5	1	4	5	0	5	3778.291	-0.004
	4	0	4	3	1	3	4062.688	0.001
	2	1	2	1	0	1	4732.159	0.001
	3	1	3	2	0	2	5911.975	-0.004
C8								
	3	1	2	3	0	3	2694.877	0.016
	4	1	3	4	0	4	3160.402	-0.014
	1	1	1	0	0	0	3449.820	0.001
	5	1	4	5	0	5	3797.328	0.000
	4	0	4	3	1	3	4130.874	0.008
	6	1	5	6	0	6	4623.745	0.002

	2	1	2	1	0	1	4722.426	0.001
	5	0	5	4	1	4	5751.089	-0.005
	3	1	3	2	0	2	5907.089	-0.003
C8a								
	2	1	1	2	0	2	2401.077	-0.002
	3	1	2	3	0	3	2719.289	0.008
	4	1	3	4	0	4	3182.335	-0.004
	1	1	1	0	0	0	3482.455	0.000
	4	0	4	3	1	3	4128.181	0.003
	2	1	2	1	0	1	4761.165	-0.001
	3	1	3	2	0	2	5952.084	0.000

.1						V _{Exp} /	Δv ^a /
J.	Ka	K _c ¹	J.	Ka	K _c	MHZ	MHZ
C1							
4	1	3	4	0	4	3171.826	-0.001
1	1	1	0	0	0	3464.708	0.005
2	1	2	1	0	1	4741.258	0.002
5	2	3	5	1	4	5362.168	-0.001
3	1	3	2	0	2	5929.754	-0.003
C2							
4	1	3	4	0	4	3174.484	0.002
4	0	4	3	1	3	4090.654	-0.001
2	1	2	1	0	1	4754.524	-0.011
3	1	3	2	0	2	5940.797	0.008
C3							
2	1	1	2	0	2	2383.807	-0.012
4	1	3	4	0	4	3163.991	0.003
1	1	1	0	0	0	3459.285	0.000
2	1	2	1	0	1	4731.714	0.010
5	2	3	5	1	4	5362.957	0.002
3	1	3	2	0	2	5916.555	-0.007
C4							
3	1	2	3	0	3	2687.666	0.003
1	1	1	0	0	0	3439.034	-0.010
4	0	4	3	1	3	4164.006	0.011
2	1	2	1	0	1	4714.223	-0.008
5	2	3	5	1	4	5287.898	0.003
5	0	5	4	1	4	5787.189	-0.008
3	1	3	2	0	2	5900.683	0.008
C4a							
1	1	1	0	0	0	3475.018	-0.002
5	1	4	5	0	5	3814.894	0.000
2	1	2	1	0	1	4753.735	0.004
3	1	3	2	0	2	5944.413	-0.002
C5							
3	1	2	3	0	3	2699.485	0.002
1	1	1	0	0	0	3456.552	-0.012
4	0	4	3	1	3	4116.584	-0.001
2	1	2	1	0	1	4728.508	0.009
C6							
4	1	3	4	0	4	3163.142	-0.010

Table S9. Frequencies of rotational transitions of ¹³C isotopologues of *trans*-2-naphthol. Δv^a is the difference between observed and calculated frequencies.

1	1	1	0	0	0	3476.291	0.004
5	1	4	5	0	5	3778.448	0.007
4	0	4	3	1	3	4048.277	-0.003
2	1	2	1	0	1	4742.411	-0.003
4	2	2	4	1	3	5647.609	-0.002
3	1	3	2	0	2	5922.605	0.004
C7							
3	1	2	3	0	3	2702.907	0.006
1	1	1	0	0	0	3462.492	-0.015
5	1	4	5	0	5	3780.186	0.001
2	1	2	1	0	1	4729.345	-0.022
3	2	1	3	1	2	5832.618	0.004
3	1	3	2	0	2	5909.708	0.020
C8							
4	1	3	4	0	4	3160.054	0.000
1	1	1	0	0	0	3446.433	-0.002
2	1	2	1	0	1	4719.799	0.004
3	1	3	2	0	2	5904.970	-0.002
C8a							
3	1	2	3	0	3	2716.954	0.004
4	1	3	4	0	4	3181.767	-0.002
1	1	1	0	0	0	3479.101	-0.001
2	1	2	1	0	1	4758.540	-0.004
3	1	3	2	0	2	5949.967	0.003

Rotational and Centrifugal Distortion Constants for ¹³C Isotopologues

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	1944.27(16)	1947.050(26)	1928.5610(90)	1919.490(25)	1940.959(41)
B / MHz	1119.6924(67)	1111.1331(17)	1115.16790(63)	1123.4788(15)	1123.9108(10)
C / MHz	710.6501(69)	707.7129(17)	706.87770(60)	708.9618(15)	712.06640(92)
Δ _J / kHz	[0.0136]	[0.0136]	[0.0136]	[0.0136]	[0.0135]
Δ _{JK} / kHz	[0.0409]	[0.0409]	[0.0409]	[0.0409]	[0.0408]
δJ	[-0.006]	[-0.006]	[-0.006]	[-0.006]	[-0.006]
δκ	[-0.0018]	[-0.0018]	[-0.0018]	[-0.0018]	[-0.0018]
Ν	4	7	8	8	7
σ / kHz	14.4	6.5	2.4	5.7	3.9
∆/amu Ų	-0.14(2)	-0.2920(9)	-0.2908(9)	-0.2784(9)	-0.299(7)
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	¹³ C-5 1935.954(21)	¹³ C-6 1947.0190(65)	¹³ C-7 1938.910(22)	¹³ C-8 1932.3160(78)	¹³ C-8a 1946.112(49)
A / MHz B / MHz	¹³ C-5 1935.954(21) 1116.2582(12)	¹³ C-6 1947.0190(65) 1105.69790(27)	¹³ C-7 1938.910(22) 1110.4222(11)	¹³ C-8 1932.3160(78) 1121.63140(41)	¹³ C-8a 1946.112(49) 1124.3530(31)
A / MHz B / MHz C / MHz	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12)	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32)	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10)	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39)	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18)
Α / MHz Β / MHz C / MHz Δյ / kHz	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135]	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136]	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134]	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134]	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136]
Α / MHz Β / MHz C / MHz Δ _J / kHz Δ _{JK} / kHz	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135] [0.0408]	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136] [0.0409]	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134] [0.0406]	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134] [0.0404]	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136] [0.0409]
A / MHz B / MHz C / MHz Δ _J / kHz Δ _{JK} / kHz δ _J	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135] [0.0408] [-0.006]	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136] [0.0409] [-0.006]	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134] [0.0406] [-0.006]	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134] [0.0404] [-0.006]	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136] [0.0409] [-0.006]
A / MHz B / MHz C / MHz Δ _J / kHz Δ _{Jκ} / kHz δ _J δ _κ	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135] [0.0408] [-0.006] [-0.0019]	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136] [0.0409] [-0.006] [-0.0018]	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134] [0.0406] [-0.006] [-0.0019]	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134] [0.0404] [-0.006] [-0.0018]	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136] [0.0409] [-0.006] [-0.0018]
A / MHz B / MHz C / MHz Δ _J / kHz Δ _{JK} / kHz δ _J δ _K	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135] [0.0408] [-0.006] [-0.0019] 8	<pre>¹³C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136] [0.0409] [-0.006] [-0.0018] 5</pre>	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134] [0.0406] [-0.006] [-0.0019] 7	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134] [0.0404] [-0.006] [-0.0018] 7	<pre>¹³C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136] [0.0409] [-0.006] [-0.0018] 6</pre>
A / MHz B / MHz C / MHz Δ _J / kHz Δ _{Jκ} / kHz δ _J δ _κ N σ / kHz	¹³ C-5 1935.954(21) 1116.2582(12) 708.3112(12) [0.0135] [0.0408] [-0.006] [-0.0019] 8 4.1	¹³ C-6 1947.0190(65) 1105.69790(27) 705.49660(32) [0.0136] [0.0409] [-0.006] [-0.0018] 5 0.7	¹³ C-7 1938.910(22) 1110.4222(11) 706.3493(10) [0.0134] [0.0406] [-0.006] [-0.0019] 7 3.8	¹³ C-8 1932.3160(78) 1121.63140(41) 709.99190(39) [0.0134] [0.0404] [-0.006] [-0.0018] 7 1.4	¹³ C-8a 1946.112(49) 1124.3530(31) 712.9342(18) [0.0136] [0.0409] [-0.006] [-0.0018] 6 7.8

Table S10. Experimental rotational constants and centrifugal distortion constants for ¹³C Isotopologues of *cis*-1-naphthol.

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	1938.1110(43)	1941.7080(49)	1923.4450(36)	1914.1280(21)	1935.5150(38)
B / MHz	1128.97530(26)	1120.20480(30)	1124.20450(25)	1132.72820(15)	1133.23540(27)
C / MHz	713.62120(21)	710.58920(24)	709.72380(21)	711.82680(13)	714.967100(22)
Δ _J / kHz	[0.0170]	[0.0170]	[0.0170]	[0.0170]	[0.0170]
Δ _{JK} / kHz	[0.021]	[0.021]	[0.021]	[0.021]	[0.021]
$\Delta_{\rm K}/{\rm kHz}$	[0.070]	[0.070]	[0.070]	[0.070]	[0.070]
$\delta_{ ext{ ext{ iny J}}}$ / kHz	[0.0059]	[0.0059]	[0.0059]	[0.0059]	[0.0059]
δ_{κ} / kHz	[0.023]	[0.023]	[0.023]	[0.023]	[0.023]
Ν	9	9	10	10	10
σ / kHz	1.1	1.2	1.2	0.7	1.3
∆/amu Ų	-0.2131(6)	-0.2130(7)	-0.2118(5)	-0.2119(3)	-0.2134(6)
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	1930.4220(34)	1941.5720(27)	1933.6590(21)	1927.0710(20)	1940.8140(36)
B / MHz	1125.50560(24)	1114.84010(18)	1119.60650(15)	1130.94520(14)	1133.66830(27)
C / MHz	711.19190(19)	708.40780(15)	709.26740(12)	712.90180(12)	715.86120(21)
Δ _J / kHz	[0.0170]	[0.0170]	[0.0170]	[0.0170]	[0.0170]
Δ _{JK} / kHz	[0.021]	[0.021]	[0.021]	[0.021]	[0.021]
$\Delta_{\rm K}/\rm kHz$	[0.070]	[0.070]	[0.070]	[0.070]	[0.070]
$\delta_{ m J}$ / kHz	[0.0059]	[0.0059]	[0.0059]	[0.0059]	[0.0059]
δ_{κ} / kHz	[0.023]	[0.023]	[0.023]	[0.023]	[0.023]
Ν	10	10	10	10	9
σ / kHz	1.1	0.9	0.7	0.7	1.1
∆/amu Ų	-0.2127(5)	-0.2122(4)	-0.2121(3)	-0.2126(3)	-0.2128(5)

Table S11. Experimental rotational constants and centrifugal distortion constants for ¹³C isotopologues of *trans*-1-naphthol.

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	2830.202(11)	2848.666(11)	2827.105(11)	2805.5672(74)	2839.6381(61)
В	823.2344(26)	818.8827(19)	820.0495(24)	824.2133(13)	824.2505(14)
С	637.9165(25)	636.2285(19)	635.8482(21)	637.2430(13)	639.0066(13)
Δ _J / kHz	[0.0130]	[0.0130]	[0.0130]	[0.0130]	[0.0130]
Δ_{K}	[0.140]	[0.140]	[0.140]	[0.140]	[0.140]
δJ	[0.00410]	[0.00410]	[0.00410]	[0.00410]	[0.00410]
Ν	7	7	7	9	8
σ / kHz	10.3	6.8	5.4	8.5	7.7
∆/amu Ų	-0.229(3)	-0.230(3)	-0.230(3)	-0.229(2)	-0.228(2)
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	2824.4429(43)	2847.1016(55)	2833.107(10)	2813.658(10)	2843.242(11)
В	819.89499(74)	813.1838(10)	814.9305(27)	821.9521(18)	824.5297(53)
С	635.61953(76)	632.7051(11)	633.0662(24)	636.3053(18)	639.3568(14)
Δ _J / kHz	[0.0130]	[0.0130]	[0.0130]	[0.0130]	[0.0130]
Δ_{JK}	[0.140]	[0.140]	[0.140]	[0.140]	[0.140]
δJ	[0.00410]	[0.00410]	[0.00410]	[0.00410]	[0.00410]
Ν	10	11	7	9	7
σ / kHz	7.1	9.9	5.6	7.7	3.6
∆/amu Ų	-0.129(1)	-0.220(1)	-0.230(4)	-0.229(2)	-0.228(4)

Table S12. Experimental rotational constants and centrifugal distortion constants for ¹³C isotopologues of *cis*-2-naphthol.

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	2826.4266(13)	2844.7845(71)	2823.0746(29)	2801.4505(33)	2835.6648(58)
В	824.12060(87)	819.7675(17)	820.9595(20)	825.1224(12)	825.0998(23)
С	638.27650(66)	636.5836(14)	636.2098(14)	637.5932(11)	639.3556(17)
Δ _J / kHz	[0.0130]	[0.0130]	[0.0130]	[0.0130]	[0.0130]
Δ_{K}	[0.140]	[0.140]	[0.140]	[0.140]	[0.140]
δκ	[0.00410]	[0.00410]	[0.00410]	[0.00410]	[0.00410]
Ν	5	4	6	7	4
σ / kHz	2.7	6.8	7.2	7.6	2.4
∆/amu Ų	-0.252(1)	-0.249(2)	-0.254(2)	-0.253(2)	-0.278(3)
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	2824.4429(63)	2843.2229(20)	2829.0763(53)	2809.7545(59)	2839.3825(11)
В	819.89499(21)	814.06279(75)	815.8434(34)	822.9028(30)	825.4301(27)
С	635.61953(16)	633.06372(69)	633.4304(28)	636.6802(17)	639.7204(15)
Δ _J / kHz	[0.0130]	[0.0130]	[0.0130]	[0.0130]	[0.0130]
Δ_{JK}	[0.140]	[0.140]	[0.140]	[0.140]	[0.140]
δκ	[0.00410]	[0.00410]	[0.00410]	[0.00410]	[0.00410]
Ν	5	7	6	4	5
σ / kHz	8.4	5.5	13.8	2.4	3.0
∆/amu Ų	-0.2286(4)	-0.253(1)	-0.249(4)	-0.236(3)	-0.251(3)

Table S13. Experimental rotational constants and centrifugal distortion constants for ¹³C isotopologues of *trans*-2-naphthol.

Structural Parameters

Bond									
length	rs	r _{se}	MP2	B3LYP-D3	Bond angle	rs	r _{se}	MP2	B3LYP-D3
r(1-2)	1.340(8)	1.40(3)	1.379	1.373	∠(2-1-8a)	121.7(6)	121.0(24)	120.83	120.41
r(1-8a)	1.421(5)	1.38(3)	1.421	1.424	∠(1-2-3)	120.1(3)	119.2(22)	120.27	120.44
r(2-3)	1.421(7)	1.38(4)	1.406	1.406	∠(2-3-4)	120.7(1)	121.4(22)	120.62	120.15
r(4a-8a)	1.426(7)	1.41(2)	1.433	1.429	∠(3-4-4a)	119.3(2)	120.9(21)	120.15	121.11
r(3-4)	1.375(3)	1.35(5)	1.377	1.370	∠(4-4a-8a)	119.9(5)	118.2(22)	119.75	118.44
r(4-4a)	1.407(5)	1.43(6)	1.413	1.414	∠(5-4a-8a)	118.7(5)	120.0(19)	118.40	119.22
r(4a-5)	1.440(5)	1.53(3)	1.415	1.415	∠(7-8-8a)	121.3(2)	120.5(23)	120.13	120.87
r(5-6)	1.380(4)	1.21(4)	1.377	1.370	∠(1-8a-8)	123.9(5)	122.4(22)	121.87	122.08
r(6-7)	1.411(6)	1.50(40	1.409	1.409	∠(4a-5-6)	121.2(2)	120.1(21)	120.99	120.86
r(7-8)	1.383(3)	1.40(4)	1.379	1.371	∠(5-6-7)	120.0(1)	120.1(22)	120.18	120.01
r(8-8a)	1.437(4)	1.39(3)	1.415	1.415	∠(6-7-8)	120.4(1)	120.9(22)	120.55	120.58

Table S14. Substitution (r_s) , semi-experimental (r_{se}) , and theoretical structural parameters for *cis*-1-naphthol

Table S15. Substitution (r_s), semi-experimental (r_{se}), and theoretical structural parameters for *trans*-1-naphthol

Bond									
length	rs	r _{se}	MP2	B3LYP-D3	Bond angle	r _s	r _{se}	MP2	B3LYP-D3
r(1-2)	1.364(5)	1.39(2)	1.378	1.371	∠(2-1-8a)	121.4(3)	120.6(6)	120.83	120.41
r(1-8a)	1.392(1)	1.46(4)	1.419	1.412	∠(1-2-3)	119.4(2)	120.5(5)	120.27	120.44
r(2-3)	1.423(6)	1.39(2)	1.410	1.413	∠(2-3-4)	120.5(1)	120.9(4)	120.62	120.15
r(4a-8a)	1.414(4)	1.39(2)	1.429	1.428	∠(3-4-4a)	119.4(1)	120.9(4)	120.15	121.11
r(3-4)	1.379(3)	1.36(1)	1.376	1.369	∠(4-4a-8a)	119.9(3)	120.7(6)	119.75	118.44
r(4-4a)	1.408(4)	1.42(2)	1.415	1.414	∠(5-4a-8a)	119.1(2)	117.3(6)	118.40	119.22
r(4a-5)	1.436(4)	1.41(2)	1.415	1.414	∠(7-8-8a)	120.7(1)	118.8(6)	120.13	120.45
r(5-6)	1.381(4)	1.37(2)	1.378	1.370	∠(1-8a-8)	121.9(3)	120.6(6)	121.87	122.08
r(6-7)	1.410(6)	1.42(2)	1.410	1.412	∠(4a-5-6)	120.8(2)	120.8(9)	120.99	120.86
r(7-8)	1.380(2)	1.37(1)	1.379	1.370	∠(5-6-7)	120.3(1)	120.3(4)	120.18	120.01
r(8-8a)	1.392(1)	1.38(2)	1.414	1.417	∠(6-7-8)	120.5(1)	120.3(5)	120.55	120.58

Bond					Bond				
length	rs	r _{se}	MP2	B3LYP-D3	angle	rs	r _{se}	MP2	B3LYP-D3
r(1-2)	1.398(6)	1.368(4)	1.377	1.371	∠(2-1-8a)	118.8(3)	120.3(4)	120.353	120.52
r(1-8a)	1.403(9)	1.45(1)	1.414	1.415	∠(1-2-3)	121.6(1)	121.2(4)	120.623	120.59
r(2-3)	1.378(9)	1.409(6)	1.411	1.413	∠(2-3-4)	119.9(1)	119.7(3)	120.031	119.88
r(3-4)	1.375(3)	1.356(7)	1.374	1.366	∠(3-4-4a)	120.7(1)	121.8(5)	121.034	121.36
r(4-4a)	1.420(4)	1.421(7)	1.416	1.416	∠(4-4a-8a)	118.6(4)	118.5(4)	118.646	118.49
r(4a-5)	1.426(3)	1.414(7)	1.414	1.413	∠(5-4a-8a)	119.9(4)	118.8(4)	119.230	119.14
r(4a-8a)	1.404(4)	1.422(4)	1.429	1.426	∠(1-8a-8)	121.3(2)	121.9(4)	121.912	122.25
r(5-6)	1.384(3)	1.370(4)	1.378	1.371	∠(4a-5-6)	120.2(2)	120.9(6)	120.670	120.91
r(6-7)	1.378(4)	1.411(5)	1.411	1.410	∠(5-6-7)	120.2(1)	119.9(3)	120.19	119.98
r(7-8)	1.378(2)	1.366(5)	1.379	1.371	∠(6-7-8)	120.7(1)	120.3(3)	120.366	120.53
r(8-8a)	1.436(7)	1.398(5)	1.415	1.415	∠(7-8-8a)	120.5(3)	120.4(4)	120.775	120.85

Table S16. Substitution (r_s) , semi-experimental (r_{se}) , and theoretical structural parameters for *cis*-2-naphthol

Table S17. Substitution (r_s) , semi-experimental (r_{se}) , and theoretical structural parameters for *trans*-2-naphthol

Bond					Bond				
length	r _s	r _{se}	MP2	B3LYP-D3	angle	rs	r _{se}	MP2	B3LYP-D3
r(1-2)	1.386(5)	1.40(4)	1.376	1.371	∠(2-1-8a)	119.2(3)	117(3)	120.269	119.267
r(1-8a)	1.393(6)	1.22(7)	1.412	1.415	∠(1-2-3)	120.0(2)	121(2)	120.471	120.999
r(2-3)	1.402(8)	1.42(2)	1.411	1.413	∠(2-3-4)	119.9(1)	120(2)	120.286	119.919
r(3-4)	1.382(3)	1.32(3)	1.377	1.366	∠(3-4-4a)	120.5(1)	122(2)	120.817	120.574
r(4-4a)	1.429(4)	1.50(3)	1.414	1.416	∠(4-4a-8a)	118.4(4)	112(7)	118.578	117.748
r(4a-5)	1.414(3)	1.49(3)	1.414	1.413	∠(5-4a-8a)	120.2(3)	124(8)	119.323	121.297
r(4a-8a)	1.411(3)	1.48(4)	1.430	1.426	∠(1-8a-8)	121.3(2)	119(3)	121.763	121.125
r(5-6)	1.380(3)	1.20(2)	1.378	1.371	∠(4a-5-6)	119.5(2)	123(3)	120.611	119.930
r(6-7)	1.411(4)	1.50(1)	1.411	1.410	∠(5-6-7)	120.1(1)	120(2)	120.204	120.128
r(7-8)	1.386(2)	1.37(2)	1.378	1.371	∠(6-7-8)	120.4(1)	121(2)	120.406	120.504
r(8-8a)	1.435(5)	1.47(4)	1.416	1.415	∠(7-8-8a)	120.9(2)	121(3)	120.796	120.757

Data from AIMA11 QTAIM Calculations

Table S18. Compilation of results from QTAIM calculations with the AIMA11 program for c	<i>is-</i> and
trans-1-naphthol. All energies are in kcal/mol.	

	trans-1-naphthol	cis-1-naphthol	Δ (trans – cis)
ab initio energy	-2.8948295089E+05	-2.8948181925E+05	-1.1316397750
C-skeleton ^a	-2.3893145383E+05	-2.3892238752E+05	-9.0663095050
C-skeleton + O-atom	-2.8655709929E+05	-2.8654901952E+05	-8.0797621625
Ring H-atoms	-2.6895304201E+03	-2.6952714802E+03	5.7410600680
All H-atoms	-2.9258579782E+03	-2.9328113415E+03	6.9533632738
Total AIM energy	-2.8948295726E+05	-2.8948183087E+05	-1.1263938750
av H-atoms	-3.8498116888E+02	-3.8338342209E+02	-1.5977467875
(not OH, H-H contact)			
(av H-atoms)	-5.3377620175	11.587525563	
– (H-H contact)			
H12 (C-H H)	-3.7964340686E+02	-3.9497094765E+02	15.327540793
H19 (O-H H)	-2.3632755809E+02	-2.3753986129E+02	1.2123032057
018	-4.7625645456E+04	-4.7626632003E+04	0.98654734250
q(H12) ^b / e	0.056720892460	-0.0046104091000	
q(H19) / e	0.57607206328	0.57506762675	
C4-C11-O18 angle / °	116.469	121.826	
H H distance / Å	2.27396	1.87624	
Bond Path Length / Å		2.098360697	
C4-C11-O18-H19 / °	-180	6.462	

^aThe energies are the scaled electronic kinetic energies of the atoms ("K_scaled" in AIMAII), an approximation to the virial-based total energies. ^bNet charge of the atom in units of the electron charge.

Table S19. Electron density derived properties related to the H12-H19 close contact in *cis*-1-naphthol at different levels of theory.

	B3LYP	wB97XD	MP2
BCP ρ [e/bohr ³] ^a	0.01496	0.01534	0.01581
BCP Δ²ρ [e/bohr⁵] [♭]	0.05825	0.05530	0.05783
BCP H [hartree/bohr ³] ^c	-0.002514	-0.001843	-0.001549
BCP ε ^d	1.0898	0.9651	1.0868
RCP ρ [e/bohr³]	0.01456	0.01581	0.01539
RCP Δ²ρ [e/bohr⁵]	0.06948	0.07003	0.07061
q(H12) [e] ^e	-0.004610	-0.014655	0.006553
q(H19) [e]	0.5751	0.5996	0.6135
IBSI ^f	0.031	0.036	0.045

^a Electron density; ^b Laplacian of electron density; ^c Total energy density; ^d Bond ellipticity $\varepsilon = (\lambda_1/\lambda_2)-1$; ^e Net charge of atom; Intrinsic Bond Strength Index.

Semi-Experimental Rotational Constants for ¹²C and ¹³C Isotopologues

cis-1-naphthol	Experiment	Semi-Experiment	B3LYP-D3
A / MHz	1947.51310	1962.355	1959.859
B / MHz	1124.30739	1130.679	1130.8340
C / MHz	713.09734	717.334	717.128
Δ _I / amu Ų	-0.2925	0.0175	-0.0468
trans-1-naphthol			
A / MHz	1942.10150	1955.784	1955.174
B / MHz	1133.62357	1141.283	1139.056
C / MHz	716.01804	720.758	719.744
Δ _I / amu Ų	-0.2124	-0.0417	-0.0003
cis-2-naphthol			
A / MHz	2849.15630	2870.909	2870.704
B / MHz	824.63286	829.670	828.986
C / MHz	639.7240	643.692	643.236
Δ _I / amu Ų	-0.2364	-0.0415	-0.0001
trans-2-naphthol			
A / MHz	2845.35700	2867.769	2868.659
B / MHz	825.53621	830.467	829.642
C / MHz	640.08728	644.012	643.528
Δ _ι / amu Ų	-0.2510	-0.0398	-0.0000

Table S20. Experimental, semi-experimental, and ab initio rotational constants and inertial defects for all four conformers of naphthol

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	1959.089	1961.892	1943.403	1934.332	1955.801
В	1126.065	1117.505	1121.539	1129.851	1130.283
С	714.889	711.951	711.116	713.200	716.304
∆/amu Ų	0.167	0.014	0.024	0.042	0.010
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	¹³ C-5 1950.796	¹³ C-6 1961.861	¹³ C-7 1953.752	¹³ C-8 1947.158	¹³ C-8a 1960.954
A / MHz B	¹³ C-5 1950.796 1122.630	¹³ C-6 1961.861 1112.070	¹³ C-7 1953.752 1116.794	¹³ C-8 1947.158 128.003	¹³ C-8a 1960.954 1130.725
A / MHz B C	¹³ C-5 1950.796 1122.630 712.549	¹³ C-6 1961.861 1112.070 709.734	¹³ C-7 1953.752 1116.794 710.587	¹³ C-8 1947.158 128.003 714.230	¹³ C-8a 1960.954 1130.725 717.172

Table S21. Semi-experimental rotational constants and inertial defects for ¹³C isotopologues of *cis*-1-naphthol

Table S22. Semi-experimental rotational constants and inertial defects for ¹³C isotopologues of *trans*-1-naphthol

_	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	1951.794	1955.391	1937.120	1927.810	1949.200
В	1120.205	1127.864	1131.860	1140.390	1140.890
С	710.5892	715.392	714.464	716.567	719.707
∆/amu Ų	-0.042	-0.041	-0.038	-0.038	-0.042
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	¹³ C-5 1944.105	¹³ C-6 1955.260	¹³ C-7 1947.340	¹³ C-8 1940.750	¹³ C-8a 1954.500
A / MHz B	¹³ C-5 1944.105 1133.165	¹³ C-6 1955.260 1122.500	¹³ C-7 1947.340 1127.270	¹³ C-8 1940.750 1138.600	¹³ C-8a 1954.500 1141.330
A / MHz B C	¹³ C-5 1944.105 1133.165 715.932	¹³ C-6 1955.260 1122.500 713.148	¹³ C-7 1947.340 1127.270 714.007	¹³ C-8 1940.750 1138.600 717.642	¹³ C-8a 1954.500 1141.330 720.601

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	2851.955	2870.419	2848.858	2827.320	2861.391
В	828.271	823.919	825.086	829.250	829.287
С	641.884	640.196	639.816	641.211	642.974
Δ / amu Å ²	-0.029	-0.036	-0.032	-0.025	-0.032
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	¹³ C-5 2846.196	¹³ C-6 2868.854	¹³ C-7 2854.860	¹³ C-8 2835.411	¹³ C-8a 2864.995
A / MHz B	¹³ C-5 2846.196 824.931	¹³ C-6 2868.854 818.221	¹³ C-7 2854.860 819.967	¹³ C-8 2835.411 826.989	¹³ C-8a 2864.995 829.566
A / MHz B C	¹³ C-5 2846.196 824.931 639.587	¹³ C-6 2868.854 818.221 636.672	¹³ C-7 2854.860 819.967 637.034	¹³ C-8 2835.411 826.989 640.273	¹³ C-8a 2864.995 829.566 643.324

Table S23. Semi-experimental rotational constants and inertial defects for ¹³C isotopologues of *cis*-2-naphthol

Table S24. Semi-experimental rotational constants and inertial defects for ¹³C isotopologues of *trans*-2-naphthol

	¹³ C-1	¹³ C-2	¹³ C-3	¹³ C-4	¹³ C-4a
A / MHz	2848.8383	2867.1962	2845.486	2823.8622	2858.0765
В	829.05174	824.69864	825.8906	830.05354	830.03094
С	642.20149	640.50859	640.1348	641.51819	643.28059
Δ / amu Å ²	-0.037	-0.040	-0.034	-0.032	-0.065
	¹³ C-5	¹³ C-6	¹³ C-7	¹³ C-8	¹³ C-8a
A / MHz	¹³ C-5 2846.8546	¹³ C-6 2865.6346	¹³ C-7 2851.488	¹³ C-8 2832.166	¹³ C-8a 2861.7942
A / MHz B	¹³ C-5 2846.8546 824.82613	¹³ C-6 2865.6346 818.99393	¹³ C-7 2851.488 820.77454	¹³ C-8 2832.166 827.8339	¹³ C-8a 2861.7942 830.36124
A / MHz B C	¹³ C-5 2846.8546 824.82613 639.54452	¹³ C-6 2865.6346 818.99393 636.98871	¹³ C-7 2851.488 820.77454 637.35539	¹³ C-8 2832.166 827.8339 640.6052	¹³ C-8a 2861.7942 830.36124 643.64539

Non-Covalent Interaction (NCI) Plots

Figure S3. Results from non-covalent interactions (NCI) analyses of the four experimentally assigned naphthol conformers (s=0.75). The 3D isosurfaces presented contain attractive (blue) and repulsive (red) regions. See, however, the text for the close-contact H-atoms in *cis*-1-naphthol.

Figure S4. Results from non-covalent interactions (NCI) analyses of biphenyl. The 3D isosurfaces presented contain attractive (blue) and repulsive (red) regions.

Local Mode Analyses

Figure S5. Decomposition of normal vibrational modes into %LVM contributions for *cis*-1-naphthol (B3LYP-D3(BJ)). % Contribution from O-H local stretching mode to O-H normal mode (3817 cm⁻¹) is shown in yellow. Numbering of local modes are as in the scheme.

Figure S6. Decomposition of normal vibrational modes into %LVM contributions for *trans*-1-naphthol (B3LYP-D3(BJ)). % Contribution from O-H local stretching mode to O-H normal mode (3804 cm⁻¹) is shown in yellow. Numbering of local modes are as in the scheme.

Figure S7. Vibrational displacement vectors for the O-H stretching vibration

in parentneses.	cis-1-naphthol			i	trans-1-naphthol		
Parameter ^b	kª	•	ωª	kª	•	ωª	
01-H1	8.169 (8.08	5) 38	324.2 (3804.5)	2 (3804.5) 8.097 (8.057)		3807.2 (3797.8)	
C1-01	5.825 (5.609) 1		200.8 (1178.3)	5.790 (5.673)	:	1197.3 (1185.0)	
H1-01-C1	0.743 (0.735) 1		254.1 (1248.9)	0.745 (0.749)	:	1253.1 (1258.6)	
01-C1-C2	1.716 (1.69	4) 7	74.6 (772.9)	1.756 (1.804)		798.1 (810.7)	
01-C1-C3	1.771 (1.72	8) 7	/87.2 (777.0)	1.727 (1.777)		762.8 (774.6)	
		cis-2-naphthol		i	trans-2-naphtho		
	ka		ωª	kª		ωª	
01-H1	8.091 (8.03	5) 38	805.8 (3792.6)	8.143 (8.070)	3	3818.0 (3800.9)	
C1-01	5.851 (5.73	5) 12	203.6 (1191.5)	5.824 (5.709)		1200.7(1188.8)	
H1-01-C1	0.749 (0.754) 1		256.4 (1262.6)	0.754 (0.759)	:	1261.4 (1267.0)	
01-C1-C2	1.599 (1.647)		763.1(776.3)	1.540 (1.593)		735.9 (751.6)	
01-C1-C3	1.548 (1.60	0) 7	723.3 (736.4) 1.597			748.1 (759.2)	
			Refe	ences			
	wa	iter	methanol		2-propanol		
	kª	ωª	kª	ω ^a	kª	ωª	
01-H1	8.348 (8.151)	3865.9 (3819.9)	8.288 (8.091)	3851.9 (3805.9)	8.158 (8.045)	3821.5 (3795.0)	
C1-01			4.775 (4.628)	1087.3 (1070.4)	4.417 (4.220)	1045.6 (1022.1)	
H1-01-C1	-	-	0.731 (0.736)	1241.6 (1245.2)	0.718 (0.723)	1227.0 (1232.1)	
01-C1-C2	-	-	-	-	1.280 (1.301)	609.3 (613.6)	
01-C1-C3	-	-	-	-	1.323 (1.340)	608.8 (613.0)	
		propen-2-ol			phenol		
	kª		ω ^a	kª		ωª	
01-H1	8.221 (8.12	0) 38	336.4 (3812.7)	8.132 (8.054)	3	3815.5 (3797.1)	
C1-01	5.572 (5.42	6) 11	.74.5 (1159.0)	5.838 (5.729)	:	1202.2 (1190.9)	
H1-01-C1	0.762 (0.76	8) 12	.69.9 (1275.3)	0.751 (0.755)	:	1258.4 (1264.0)	
01-C1-C2	1.408 (1.46	1) 6	68.6 (680.3)	1.599 (1.642)		756.0 (767.0)	
01-C1-C3	1.375 (1.42	8) 7	/08.4 (724.7)	1.543 (1.590)		729.8 (743.0)	

Table S25. ^b For each local mode, the local mode force constant k^a (mDyn/Å for stretching and mDyn.Å/Rad² for bending vibrations) and local mode frequency ω^a (cm⁻¹) are given. Reported values are for MP2/aug-cc-pVTZ calculations followed by values for B3LYP-D3(BJ)/def2-TZVP calculations in parentheses.

Inertial Defect Differences

Table S26. Inertial defects and def	fect differences l	between calcula	ated and expe	erimental	defect values for a	ll four naphthol
conformers. ^a The experimental inertial defect values. ^b The calculated inertial defect values obtained from summing Oka's						
equation over the lowest out-of-p	lane vibrational	modes. ^c Mome	nt of inertia v	alues fro	m the fit of Jahn et	al
	2.4. /	ha /		1	(1, 1/2)	1, 1/2 1

	^a Δ _e /	^b Δ _{l=2} /	Δ _e - Δ _{l=2} /	^c (<i>I_{cc}</i>) ^{1/2} /	$(I_{cc})^{1/2}$ /
	alliu A	alliu A	annu A	aniu A	
<i>cis</i> -1-naphthol	-0.2925	-0.62	0.33	30.8	26.6
trans-1-naphthol	-0.2124	-0.43	0.22	20.6	26.6
cis-2-naphthol	-0.2365	-0.46	0.23	21.5	28.1
trans-2-naphthol	-0.251	-0.46	0.21	19.6	28.1

Table S27. The calculated inertial defect values obtained from summing Oka's equation over the lowest out-of-plane vibrational modes.

	^a Δ _{l=1} / amu Ų	^b Δ ₁₌₂ / amu Ų	²Δ _{I=3} / amu Ų	^d Δ _{I=4} / amu Ų	^e Δ _{I=5} / amu Ų
cis 1-naphthol	-0.42	-0.62	-0.78	-0.91	-0.99
trans 1-naphthol	-0.24	-0.43	-0.56	-0.68	-0.78
cis 2-naphthol	-0.28	-0.46	-0.57	-0.67	-0.74
trans 2-naphthol	-0.28	-0.46	-0.57	-0.68	-0.76

^aSummed over the lowest out-of-plane modes, ^btwo lowest out-of-plane modes, ^cthree lowest out-of-plane modes, ^dfour lowest out-of-plane modes.

Table S28. Inertial defect differences between the experiment and calculated inertial defect values summed over Oka's equation.

	Δ _e - Δ _{I=1} / amu Å ²	$\Delta_{e} - \Delta_{l=2} / amu Å^{2}$	Δ _e - Δ _{I=3} / amu Å ²	Δ _e - Δ _{I=4} / amu Å ²	$\Delta_{\rm e}$ - $\Delta_{\rm I=5}$ / amu Å ²
cis 1-naphthol	0.13	0.33	0.49	0.62	0.70
trans 1-naphthol	0.03	0.22	0.35	0.47	0.57
cis 2-naphthol	0.04	0.23	0.34	0.43	0.51
trans 2-naphthol	0.03	0.21	0.32	0.43	0.52

	Δ _{exp} / amu Ų	Lowest out-of-plane (l=1) / cm ⁻¹	(I=2)	(I=3)	(I=4)	(I=5)	(<i>I_{cc}</i>) ^{1/2}	Rings
Quinoline ^a	-0.13405	173 ^g	182 ^g	-	-	-	23.6	2
Isoquinoline ^a	-0.13485	171 ^g	185 ^g	-	-	-	23.8	2
Phthalazine ^b	-0.154	170 ^g	177 ^g	-	-	-	23.7	2
Quinazoline ^b	-0.136	172 ^g	180 ^g	-	-	-	23.5	2
Quinoxaline ^b	-0.119	173 ^g	184 ^g	-	-	-	23.3	2
Acridine ^c	-0.4363	93 ^g	114 ^g	238 ^g	-	-	36.3	3
Phenanthroline ^c	-0.4423	98 ^g	104 ^g	238 ^g	-	-	34.4	3
Phenanthridine ^c	-0.4576	99 ^g	104 ^g	233 ^g	-	-	34.9	3
5,6-Benzoquinoline ^d	-0.471	93 ^g	100 ^g	222 ^g	-	-	34.9	3
7,8-Benzoquinoline ^d	-0.413	98 ^g	115 ^g	228 ^g	-	-	34.6	3
Benzanthrone ^e	-1.054	45 ^g	94 ^g	135 ^g	165 ^g	-	43.9	4
Naphthalene ^f	-0.137	172	186	395	480	487	23.9	2
cis-1-naphthol	-0.2925	80	172	205	262	425	26.6	2
trans-1-naphthol	-0.2124	141	173	261	287	348	26.6	2
cis-2-naphthol	-0.2365	122	182	300	366	411	28.1	2
trans-2-naphthol	-0.251	122	181	299	307	411	28.1	2

Table S29. Lowest out-of-plane modes and the theoretical and experimental inertial defects from previous work and for the four isomers of naphthol.

Lowest Out-of-Plane Vibrational Modes (cis 1-naphthol)

Figure S8. Lowest out-of-plane vibrational modes, with their respective displacement vectors, for *cis*-1-naphthol calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.

Lowest Out-of-Plane Vibrational Modes (trans 1-naphthol)

Figures S9. Lowest out-of-plane vibrational modes, with their respective displacement vectors, for *trans*-1-naphthol calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.

Figures S10. Lowest out-of-plane vibrational modes, with their respective displacement vectors, for *cis*-2-naphthol calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.

Lowest Out-of-Plane Vibrational Modes (trans 2-naphthol)

Figures S11. Lowest out-of-plane vibrational modes, with their respective displacement vectors, for *trans*-2-naphthol calculated at the B3LYP-D3(BJ)/def2-TZVP level of theory.

Figure S12. Inertial defect differences for the four isomers of naphthol compared to the results of Jahn et al. The four plots contain different numbers of out-of-plane vibrations used to sum over Oka's equation.

Charge Model 5 Analysis

Figure S13. Atom labelling used in the descriptions of the H-H interactions

Figure S14. Charge Model 5 (CM5) charges for atoms involved in the H-H interaction for all four naphthol isomers. The H'-H" charge separation was calculated by subtracting the H" charge from the H' charge.

Figure S15. Charge Model 5 (CM5) charges for atoms involved in the H-H interaction for biphenyl. The H'-H" charge separation was calculated by subtracting the H" charge from the H' charge.

Table S30. Net CM5 charge change from 90° to 0° for five atom types. Positive charge difference
indicates electron density decreases as the dihedral angle approaches zero. Negative charge
difference indicates electron density increases as the dihedral angle approaches zero.

	C'	Ο'	H'	Н″	С"
trans-1-naphthol	0.006276	0.020825	0.000103	-0.006450	-0.018738
cis-1-naphthol	0.005287	0.016097	-0.012526	-0.000930	-0.004424
trans-2-naphthol	0.004300	0.021359	-0.001350	-0.004230	-0.010043
cis-2-naphthol	0.005819	0.022029	-0.000165	-0.006150	-0.018889
Biphenyl	0.000391	-	-0.000610	-0.000613	-0.093294

NBO Analysis

Table S31. Occupancy for each bonding^b and anti-bonding^c orbital for all four isomers of naphthol. ^aAverage occupancy for *trans* 1-naphthol, *cis* 2-naphthol, and *trans* 2-naphthol.

			•		
	trans-1-naphthol	Cis-2-naphthol	trans-2-naphthol	Average ^a	cis-1-naphthol
O'-H' BD⁵	1.98737	1.98764	1.98781	1.98761	1.98690
O'-H' BD*℃	0.00690	0.00681	0.00648	0.00673	0.00911
C"-H" BD	1.97857	1.97741	1.97873	1.97824	1.97677
C"-H" BD*	0.01287	0.01422	0.01334	0.01348	0.01561

Table S32. Interaction energies between bonding and antibonding orbitals obtained from second order perturbative treatment of the Fock matrix for *trans*-1-naphthol

i	C-H BD O-H BD*	O-H BD C-H BD*	Sum of Interactions
trans-1-naphthol	/ kJ mol⁻¹	/ kJ mol⁻¹	/ kJ mol ⁻¹
0	0.46	0.21	0.67
10	0.42	0.21	0.63
20	0.29	0.21	0.50
30	0.17	0.21	0.38
40	0.00	0.21	0.21
50	0.00	0.17	0.17
60	0.00	0.17	0.17
70	0.00	0.17	0.17
80	0.00	0.21	0.21
90	0.00	0.00	0.00

Table S33. Interaction energies between bonding and antibonding orbitals obtained from second order perturbative treatment of the Fock matrix for cis-1-naphthol

	C-H BD O-H BD*	O-H BD C-H BD*	Sum of Interactions
cis-1-naphthol	/ kJ mol⁻¹	/ kJ mol⁻¹	/ kJ mol ⁻¹
0	3.85	0.38	4.23
10	3.35	0.38	3.72
20	2.26	0.29	2.55
30	1.13	0.21	1.34
40	0.42	0.17	0.59
50	0.13	0.08	0.21
60	0.08	0.00	0.08
70	0.00	0.00	0.00
80	0.00	0.00	0.00

90 0.00 0.00	0.00
---------------------	------

Table S34. Interaction energies between bonding and antibonding orbitals obtained from second order perturbative treatment of the Fock matrix for *trans*-2-naphthol

	C-H BD O-H BD*	O-H BD C-H BD*	Sum of Interactions
trans-2-naphthol	/ kJ mol⁻¹	/ kJ mol⁻¹	/ kJ mol⁻¹
0	0.42	0.17	0.59
10	0.38	0.17	0.54
20	0.25	0.17	0.42
30	0.13	0.13	0.25
40	0.00	0.13	0.13
50	0.00	0.13	0.13
60	0.00	0.13	0.13
70	0.00	0.13	0.13
80	0.00	0.13	0.13
90	0.00	0.13	0.13

Table S35. Interaction energies between bonding and antibonding orbitals obtained from second order perturbative treatment of the Fock matrix for cis-2-naphthol

· · ·	C-H BD O-H BD*	O-H BD C-H BD*	Sum of Interactions
cis-2-naphthol	/ kJ mol⁻¹	/ kJ mol⁻¹	/ kJ mol ⁻¹
0	0.42	0.25	0.67
10	0.38	0.25	0.63
20	0.25	0.21	0.46
30	0.13	0.21	0.33
40	0.04	0.21	0.25
50	0.00	0.21	0.21
60	0.00	0.21	0.21
70	0.00	0.21	0.21
80	0.00	0.21	0.21
90	0.00	0.21	0.21

Figure S16. ^aSummed donor-acceptor (attraction) energies for 1-naphthol with the close contact H-H interactions subtracted. ^bPairwise steric exchange (repulsion) energies for 1-naphthol with close contact H-H interactions subtracted.

	Attraction /kJ mol ⁻¹		Repulsion /kJ mol ⁻¹	
Dihedral Angle	B3LYP-D3(BJ)	ωB97XD	B3LYP-D3(BJ)	ωB97XD
0	4.2	4.8	11.8	13.5
30	1.3	1.7	8.0	8.7
60	0.1	0.1	2.6	2.7
90	0.0	0.0	0.3	0.3

Table 36. Attraction and repulsion energy comparison for *cis*-1-naphthol at the B3LYP-D3(BJ)/def-TZVP and ω B97XD/Jun-cc-pVTZ level of theory