High energy state interactions, energetics and multiphoto-fragmentation processes of HI

Meng-Xu Jiang and Ágúst Kvaran*

Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.

Supplementary material: Supporting material (figures and tables) to go with the main text of the paper "High energy state interactions, energetics and multiphoto-fragmentation processes of HI"

Content:

Figures:

Fig. S1: New REMPI Rydberg (Ry) state (HI**) spectra analysed in the two-photon excitation region of 69 $000 - 75\ 000\ \text{cm}^{-1}$,

a)	<i>Ry</i> : $d^{3}\Pi_{1}[3/2] 6p\sigma(v'=3)$	6
b)	$Ry: f^{3}\Delta_{2} [3/2]7p\pi (\nu'=0)$	6
c)	<i>Ry</i> : $m^{3}\Pi_{2,1}[3/2]7s\sigma(v'=2)$	7
	-for ions as specified in the figures. Rotational line assignments for	
	two-photon resonant transitions from the ground state $X^1 \Sigma^+(v''=0)$ are indicated.	

Fig. S2: REMPI spectra of interacting excited states of HI for,

a)	$P^{1}\Delta_{2}[1/2]4f\pi(v'=0)$ and $k^{3}\Pi_{2}[1/2]5d\delta(v'=1),\ldots$	8
b)	$j^{3}\Sigma_{0}^{-}[1/2]5d\pi(\nu'=1)$ and $V^{1}\Sigma^{+}(\nu'=m+22)$,	9
c)	$M^{1}\Pi_{1}$ [1/2]7s $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+29)$	9
d)	$r^{3}\Pi_{0}$ [1/2]7p $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$	
	Ion spectra as specified in the figures and assignments of rotational lines due to	
	two-photon resonant transitions from the $X^{1}\Sigma^{+}(v''=0)$ ground state.	

Fig. S3: Simulation: Comparison of experimental and calculated two-photon absorption spectra for interacting states. Black and red arrows indicate the band origin for the two interacting states in each case. i) Two-photon REMPI spectra of HI for HI⁺ (black) and H⁺ (red) ions. ii) Calculated two-photon absorption spectrum¹.

a)	Simulation of the $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$ system	11
b)	Simulation of the $j^{3}\Sigma_{0}^{-+}[1/2]5d\pi(v'=1)$ and $V^{1}\Sigma^{+}(v'=m+22)$ system	11
c)	Simulation of the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ system	12
d)	Simulation of the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ system	12
Fig. S4 state in	1 : Perturbation effects due to the $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$ interaction:	
a)	Spacing between rotational levels ($\Delta E_{J, J-I}$) as a function of J' ; experimental values	13
b)	Reduced term value plots: Deperturbed energy level values subtracted from	10

experimental energy level values. 13 c) Relative ion-signal intensities $(I(I^+)/I(HI^+))$ vs. J' derived from the Q-rotational lines for the $P^1\Delta_2[1/2]4f\pi(v'=0)$ spectrum. 14 d) Rotational line-widths vs J' derived from the Q lines of the I⁺ signals for the $P^1\Delta_2[1/2]4f\pi(v'=0)$ state spectrum. 14 **Fig. S5:** Perturbation effects due to the $j^3\Sigma_0^{-}[1/2]5d\pi(\nu'=1)$ and $V^1\Sigma^+(\nu'=m+22)$ state interaction:

a)	Spacing between rotational levels ($\Delta E_{J, J-I}$) as a function of J' ;	
	experimental values	15
b)	Reduced term value plots: Deperturbed energy level values subtracted from	
	experimental energy level values.	15
c)	Relative ion-signal intensities $(I(I^+)/I(HI^+))$ and $I(H^+)/I(HI^+))$ vs. J' derived	
	from the <i>Q</i> -rotational lines for the $j^3 \Sigma_0^{-+} [1/2] 5 d\pi (v'=1)$ and $V^1 \Sigma^+ (v'=m+22)$	
	spectra	16
d)	Rotational line widths vs J' derived from the Q lines of ion-spectra for the	
	$j^{3}\Sigma_{0}^{-+}[1/2]5d\pi(\nu'=1)$ and $V^{1}\Sigma^{+}(\nu'=m+22)$ state spectra	17

Fig. S6 Perturbation effects due to the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ states interaction:

Spacing between rotational levels ($\Delta E_{J, J-1}$) as a function of J' ; experimental	
values	18
Reduced term value plots: Deperturbed energy level values subtracted from	
experimental energy level values	18
Relative ion-signal intensities $(I(I^+)/I(HI^+))$ and $I(H^+)/I(HI^+)$ vs. J' derived	
from the <i>Q</i> -rotational lines for the $V^1\Sigma^+(v'=m+29)$ spectrum	19
Rotational line widths vs. J' derived from the Q lines of the ion-spectra for	
the $V^{1}\Sigma^{+}(v'=m+29)$ state	19
	Spacing between rotational levels ($\Delta E_{J, J-1}$) as a function of J' ; experimental values Reduced term value plots: Deperturbed energy level values subtracted from experimental energy level values Relative ion-signal intensities ($I(I^+)/I(HI^+)$ and $I(H^+)/I(HI^+)$ vs. J' derived from the Q -rotational lines for the $V^1\Sigma^+(v'=m+29)$ spectrum Rotational line widths vs. J' derived from the Q lines of the ion-spectra for the $V^1\Sigma^+(v'=m+29)$ state

Fig. S7 Perturbation effects due to the $r^3\Pi_0$ [1/2]7p $\sigma(\nu'=0)$ and $V^1\Sigma^+(\nu'=m+36)$ state interaction:

a)	Spacing between rotational levels ($\Delta E_{J, J-I}$) as a function of J' ;	
	experimental values	20
b)	Reduced term value plots: Deperturbed energy level values subtracted from	
	experimental energy level values	20
c)	Relative ion-signal intensities $(I(I^+)/I(HI^+))$ and $I(H^+)/I(HI^+)$ vs. J' derived	
	from the <i>Q</i> -rotational lines for the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$	
	spectra	21
d)	Rotational line widths vs. J' derived from the Q lines of the ion-spectra for	
	the $r^{3}\Pi_{0}$ [1/2]7p $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$ states	22

Fig. S8: Energy level diagram showing deperturbed (broken lines) and perturbed (solid lines) rotational energy levels for,

a)	$P^{1}\Delta_{2}[1/2]4f\pi(\nu'=0)$ and $k^{3}\Pi_{2}[1/2]5d\delta(\nu'=1)$	23
b)	$j^{3}\Sigma_{0}^{-}[1/2]5d\pi(\nu'=1)$ and $V^{1}\Sigma^{+}(\nu'=m+22)$	23
c)	$M^{1}\Pi_{1}$ [1/2]7s $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+29)$	24
d)	$r^{3}\Pi_{0}$ [1/2]7p $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$.24

Fig. S9: Energy level diagram of known Rydberg states for HI converging to the ground ionic states $X^2\Pi$ [3/2,1/2] as well as some predicted states.

a)	$^{1,3}\Sigma$ and $^{1,3}\Delta$, $[\Omega_c]$ np π ($n = 6, 7$) Rydberg states.	25
b)	^{1,3} Σ and ^{1,3} Δ , [Ω_c]nd π ($n = 5, 6$) Rydberg states.	26
c)	^{1,3} Σ and ^{1,3} Δ , [Ω_c]nf π ($n = 4, 5$) Rydberg states.	.27
d)	$^{1,3}\Pi$ Rydberg states with σ and δ Rydberg electrons.	.28

Fig. S10 Vibrational energy levels the $V {}^{1}\Sigma^{+}_{0+}(\sigma\pi^{4})\sigma^{*}$ ion-pair state as well as	
vibrational energy level spacing $(\Delta v^0(v'+1, v') = v^0(v'+1, v') - v^0(v'))$ and	
rotational constants $(B'(v'))$	29

Tables:

Tables S1:	30-33
a – c): Rotational lines; new Rydberg states , (a) $d^3\Pi_1[3/2]$ 6p $\sigma(\nu'=3)$,	
(b) $f^{3}\Delta_{2}$ [3/2]7p π (v'=2) and (c) $m^{3}\Pi_{2,1}$ [3/2]7s σ (v'=2)	30-31
d - g): Rotational lines; Rydberg and ion-pair states which exhibit the localized	
level-to-level interactions, (d) $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$,	
e) $j^{3}\Sigma_{0}^{-+}[1/2]5d\pi(\nu'=1)$ and $V^{1}\Sigma^{+}(\nu'=m+22)$, (f) $M^{1}\Pi_{1}[1/2]7s\sigma(\nu'=0)$ and	
$V^{1}\Sigma^{+}(v'=m+29)$ (g) $r^{3}\Pi_{0}[1/2]7p\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$	31-33

Tables S2:

a)	New HI Rydberg states: Rydberg state specifications ($Ry^{2S+1}\Lambda_{\Omega}[\Omega_c]nl\lambda$) (see ma	ain
	text), vibrational quantum numbers (v'), symmetry, band origin(v^0), rotational particular particular (v'), symmetry, band origin(v^0), rotational particular particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational particular (v'), symmetry, band origin(v^0), rotational (v'), symmetry, band origin(v^0), rotational (v'), symmetry, band origin(v'), symmetry, band origin	rameters
	(B',D') , relative intensities, quantum defect values (δ) and line series derived from	1
	Rydberg state spectra	33
b)	Perturbed Rydberg and ion-pair states: Rydberg and ion-pair states	
	specifications ($Ry^{2S+1}\Lambda_{\Omega}[\Omega_c]nl\lambda$) (see main text), vibrational quantum	
	numbers (v'), symmetry, band origin (v^0), rotational parameters (B', D'), relative	
	intensities, quantum defect values (δ) and line series derived from Rydberg	
	state spectra	34

Table S3: State interactions; J' level proximity $(\Delta E_{J'} = E_J(1) - E_J(2) / \text{cm}^{-1})$, interaction strength $(W_{12} / \text{cm}^{-1})$ and fractional state mixing (c_1^2, c_2^2)	35
Table S4. Summary of Rydberg states and spectra, previously observed and reassigned.	36-38
Table S5. Summary of ion-pair states and spectra previously observed	39-40
References	40

Fig. S1 a) REMPI spectra for HI for 2hv resonant transition in the excitation region of 69480 – 69900 cm⁻¹. Top (black) is the HI⁺ ion, middle (blue) is I⁺ ion, bottom (red) is H⁺ ion. The new $d^{3}\Pi_{1}$ [3/2] 6p $\sigma(v'=3)$ Rydberg states was located and assigned in the HI⁺ and I⁺ spectra.

Fig. S1 b) REMPI spectra for HI due to 2hv resonance transition in the energy region of 74 440 – 74 620 cm⁻¹. Ions are indicated. Assignment of rotational line of the $F^1\Delta_2$ [1/2] 6p π ($\nu'=2$) Rydberg state spectrum in the HI⁺ ion spectrum is shown.

Fig. S1 c) REMPI spectra of HI due to 2hv resonance transition in the excitation region of 74 440 $-74\ 620\ \text{cm}^{-1}$. Assignment of rotational line of the $m^3\Pi_{2,1}[1/2]7s\sigma$ (v'=2) Rydberg state spectrum in the HI⁺ ion spectrum is indicated.

Fig S2 a) REMPI spectra for HI due to 2hv resonance transition in the excitation region of 75000 -75200 cm^{-1} . Top (black): HI⁺ ion, middle (blue): I⁺ ion, bottom (red): H⁺ ion. The new $k^3\Pi_2$ [1/2]5d $\delta(v'=1)$ Rydberg state spectrum was located and assigned.

Fig. S2 b) REMPI spectra for HI due to 2hv resonance transition in the excitation region of 75300 - 75700 cm⁻¹. Assignment of rotational *Q*-lines, J' = 0 -7 for the $V^1\Sigma^+(v' = m + 22)$ ion-pair vibrational state in the I⁺ and H⁺ ion spectrum is shown.

Fig. S2 c) REMPI spectra for HI due to 2hv resonance transition in the excitation region of 77000 – 77300cm⁻¹. Ions are indicated. The new $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ Rydberg state spectrum was located and assigned.

Fig. S2 d) REMPI spectra for HI due to 2hv resonance transition in the excitation region of 78500 – 78700 cm⁻¹. Top (black): HI⁺ ion, middle (blue): I⁺ ion, bottom (red): H⁺ ion. The new $R^{1}\Pi_{1}$ [1/2]7p $\sigma(\nu'=0)$ Rydberg state spectrum and $V^{1}\Sigma^{+}(\nu'=m+36)$) ion-paired state spectrum were located and assigned.

Fig. S3 a) Simulation of $P^1\Delta_2[1/2]4f\pi(\nu'=0)$ and $k^3\Pi_2[1/2]5d\delta(\nu'=1)$ system, i) Experimental data; ii) calculated.

Fig. S3 b) Simulation of $j^3\Sigma_0^+[1/2]5d\pi(v'=1)$ and $V^1\Sigma^+(v'=m+22)$ system, i) Experimental data; ii) calculated.

Fig. S3 c) Simulation of $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ system, i) Experimental data; ii) calculated.

Fig. S3 d) Simulation of $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ system, i) Experimental data; ii) calculated.

Fig. S4 a) Perturbation effects due to the $P^1\Delta_2[1/2]4f\pi(\nu'=0)$ and $k^3\Pi_2[1/2]5d\delta(\nu'=1)$ state interaction. Spacing between rotational levels ($\Delta E_{J, J-1}$) as a function of J'; experimental values

Fig.S4 b) Perturbation effects due to the $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$ state interaction. Reduced term value plots: Deperturbed energy level values subtracted from experimental energy level values

Fig. S4 c) Perturbation effects due to the $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$ state interaction. Relative ion-signal intensities ($I(I^+)/I(HI^+)$) vs. J' derived from the Q-rotational lines for the $P^1\Delta_2[1/2]4f\pi(v'=0)$ spectrum.

Fig. S4 d) Perturbation effects due to the $P^1\Delta_2[1/2]4f\pi(\nu'=0)$ and $k^3\Pi_2[1/2]5d\delta(\nu'=1)$ state interaction. Rotational line-widths vs *J'* derived from the *Q* lines of the I⁺ signals for the $P^1\Delta_2[1/2]4f\pi(\nu'=0)$ state spectrum.

Fig. S5 a) Perturbation effects due to the $j^3\Sigma_0^{-1}[1/2]5d\pi(\nu'=1)$ and $V^1\Sigma^+(\nu'=m+22)$ state interaction. Spacing between rotational levels ($\Delta E_{J,J-I}$) as a function of J'.

Fig. S5 b) Perturbation effects due to the $j^3\Sigma_0^{-1}[1/2]5d\pi(v'=1)$ and $V^1\Sigma^+(v'=m+22)$ state interaction. Reduced term value plots: Deperturbed energy level values subtracted from experimental energy level values.

Fig. S5 c) Perturbation effects due to the $j^3\Sigma_0^+[1/2]5d\pi(\nu'=1)$ and $V^1\Sigma^+(\nu'=m+22)$ state interaction. Relative ion-signal intensities ($I(I^+)/I(HI^+)$ and $I(H^+)/I(HI^+)$) vs. J' derived from the Q-rotational lines for the $j^3\Sigma_0^-^+[1/2]5d\pi(\nu'=1)$ and $V^1\Sigma^+(\nu'=m+22)$ spectra.

Fig. S5 d) Perturbation effects due to the $j^3\Sigma_0^+[1/2]5d\pi(v'=1)$ and $V^1\Sigma^+(v'=m+22)$ state interaction. Rotational line widths vs *J'* derived from the *Q* lines of ion-spectra for the $j^3\Sigma_0^+[1/2]5d\pi(v'=1)$ and $V^1\Sigma^+(v'=m+22)$ state spectra.

Fig. S6 a) Perturbation effects due to the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ states interaction. Spacing between rotational levels ($\Delta E_{J,J-1}$) as a function of J'.

Fig. S6 b) Perturbation effects due to the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ states interaction. Reduced term value plots: Deperturbed energy level values subtracted from experimental energy level values.

Fig. S6 c) Perturbation effects due to the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ states interaction. Relative ion-signal intensities ($I(I^+)/I(HI^+)$ and $I(H^+)/I(HI^+)$ vs. J' derived from the Q-rotational lines for the $V^1\Sigma^+(v'=m+29)$ spectrum.

Fig. S6 d) Perturbation effects due to the $M^1\Pi_1$ [1/2]7s $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+29)$ states interaction. Rotational line-widths vs *J'* derived from the *Q* lines of the ion-spectra for the $V^1\Sigma^+(v'=m+29)$ state.

Fig. S7 a) Perturbation effects due to the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ state interaction. Spacing between rotational levels ($\Delta E_{J,J-I}$) as a function of J'.

Fig. S7 b) Perturbation effects due to the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ state interaction. Reduced term value plots: Deperturbed energy level values subtracted from experimental energy level values.

Fig. S7 c) Perturbation effects due to the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ state interaction. Relative ion-signal intensities ($I(I^+)/I(HI^+)$ and $I(H^+)/I(HI^+)$ vs. J' derived from the Q-rotational lines for the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ spectra.

Fig. S7 d) Perturbation effects due to the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ state interaction. Rotational line widths vs. *J'* derived from the *Q* lines of the ion-spectra for the $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36)$ states.

Fig. S8 a) Energy level diagram showing deperturbed (broken lines) and perturbed (solid lines) rotational energy levels for $P^1\Delta_2[1/2]4f\pi(v'=0)$ and $k^3\Pi_2[1/2]5d\delta(v'=1)$.

Fig. S8 b) Energy level diagram showing deperturbed (broken lines) and perturbed (solid lines) rotational energy levels for $j^{3}\Sigma_{0}^{-}[1/2]5d\pi(v'=1)$ and $V^{1}\Sigma^{+}(v'=m+22)$.

Fig. S8 c) Energy level diagram showing deperturbed (broken lines) and perturbed (solid lines) rotational energy levels for $M^1\Pi_1$ [1/2]7s $\sigma(\nu'=0)$ and $V^1\Sigma^+(\nu'=m+29)$.

Fig. S8 d) Energy level diagram showing deperturbed (broken lines) and perturbed (solid lines) rotational energy levels for $r^{1}\Pi_{0}$ [1/2]7p $\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$.

Fig. S9 a) ^{1,3} Σ and ^{1,3} Δ , [Ω_c]np π (n = 6, 7) Rydberg states of HI.

Fig. S9 b) ^{1,3} Σ and ^{1,3} Δ , [Ω_c]nd π (n = 5, 6) Rydberg states of HI.

Fig. S9 c) ^{1,3} Σ and ^{1,3} Δ , [Ω_c]nf π (n = 4, 5) Rydberg states of HI.

Fig. S9 d) ^{1,3} Π Rydberg states of HI with σ and δ Rydberg electrons.

Fig. S9: Energy level diagram of known Rydberg states for HI converging to the ground ionic states $X^2\Pi$ [3/2,1/2] as well as some predicted states.

a) ${}^{1,3}\Sigma$ and ${}^{1,3}\Delta$, [Ω_c]np π (n = 6, 7) Rydberg states.

b) ^{1,3} Σ and ^{1,3} Δ , [Ω_c]nd π (n = 5, 6) Rydberg states.

c) $^{1,3}\Sigma$ and $^{1,3}\Delta$, $[\Omega_c]nf\pi$ (n = 4, 5) Rydberg states.

d) ^{1,3} Π Rydberg states with σ and δ Rydberg electrons.

Solid lines (different colors) correspond to previously detected bands [1-11] and present work (orange lines), as specified in the figures. Green dotted lines correspond to predicted states according to quantum defect analyses.

Fig. S10 Vibrational energy levels the $V \,{}^{1}\Sigma^{+}_{0+}(\sigma\pi^{4})\sigma^{*}$ (red) ion-pair state as well as vibrational energy level spacing $(\Delta v^{0}(v'+1, v') = v^{0}(v'+1, v') - v^{0}(v'))$ for the $V^{1}\Sigma^{+}$ ion-pair state (black curve rotated to the left) and rotational constants (B'(v')) (rotated to the right) (\bullet – observed, \circ –predicted or guessed.

Table S1. Rotational lines of Rydberg and ion-pair state spectra:

(a – c): Rotational lines for new Rydberg state spectra, (a) $d^3\Pi_1[3/2] 6p\sigma(v'=3)$, (b) $f^3\Delta_2$ [3/2]7p π (v'=2) and (c) $m^3\Pi_{2,1}[3/2]7s\sigma(v'=2)$. (d – g): Rotational lines of Rydberg and ion-pair state spectra which exhibit state interactions, (d)

 $P^{1}\Delta_{2}[1/2]4f\pi(v'=0)$ and $k^{3}\Pi_{2}[1/2]5d\delta(v'=1)$, (e) $j^{3}\Sigma^{-}_{0}^{+}[1/2]5d\pi(v'=1)$ and $V^{1}\Sigma^{+}(v'=m+22)$, (f) $M^{1}\Pi_{1}[1/2]7s\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+29)$ (g) $r^{1}\Pi_{1}[1/2]7p\sigma(v'=0)$ and $V^{1}\Sigma^{+}(v'=m+36)$

J **O**(J) **P**(**J**) **Q**(J) **R**(J) **S**(**J**) 0 1 69624.5 69662.5 69691.1 69714.5 69689.9 2 69597.9 69647.5 69724.3 69729.5 69631.6 3 69572.7 69752.9 69733.6 4 69546.2 69614.7 69741.0 69775.2 5 69516.6 69747.4 69796.1 69818.1 6 7 69839.6 8

Table S1a. Rotational line wavenumbers for the HI $d^3\Pi_1[3/2]6p\sigma \leftarrow X^1\Sigma^+(3,0)$ spectrum.

Table S1b. Rotational line wavenumbers for the HI $f^{3}\Delta_{2}$ [3/2]7p $\pi \leftarrow X^{1}\Sigma^{+}(0,0)$ spectrum.

J'	O (J)	P (J)	Q (J)	R (J)	S (J)
0					
1					
2	74406	74471.7	74494.1	74530.8	74534.0
3		74455.2	74491.3	74539.2	74555.2
4		74438.0	74484.9	74547.2	74575.2
5		74420.8	74477.7	74555.2	74593.7
6		74409.6	74469.3	74562.4	74627.8
7			74452.8	74568.8	75282.1
8					

<u>J'</u>	<i>O</i> (<i>J</i>)	P (J)	Q(J) $R(J)$		S (J)
			$m^3\Pi_2$		
0					
1					
2		74463.3		74501.3	
3		74446.4		74507.4	
4		74428.4		74510.9	
5				74514.2	
6				74518.2	
7				74522.2	
8				74526.4	
			$m^3\Pi_1$		
0					
1	74507.4	74555.2	74570.0	74604.1	
2					74606.5

Table S1c. Rotational line wavenumbers for the HI m³ $\Pi_{2,1}[3/2]7s\sigma \leftarrow X^{1}\Sigma^{+}(2,0)$ spectrum.

Table S1d. Rotational line wavenumbers for the HI $P^1\Delta_2[1/2]4f\pi(v'=0)$ and

 $k^{3}\Pi_{2} [1/2] 5d\delta(v'=1) \leftarrow X^{1}\Sigma^{+} (v''=0)$ spectra.

<u> </u>	0 (J)	P (J)	Q (J)	R (J)	S (J)
			$P^1\Delta_2$		
0					
1					
2	75033.8	75086.3	75123.8	75147.6	75159.9
3	75005.8	75072.5	75121.4	75159.8	75180.8
4		75058.1	75119.6	75169.9	75208.4
5		75042.9	75117.4	75181.0	75232.6
6		75026.8	75114.6	75191.3	75257.6
7		75011	75109.4		75282.1
			$k^3\Pi_2$		
0					
1					
2	75059.9		75122.4		75158.7
3			75123.0		75184.1
4			75122.1		
5			75120.9		
6			75119.4		
7			75117.5		

J'	Q (J)	Q (J)	
	$j^3\Sigma_0^+$	$V^1\Sigma^+$	
0	75545.5	75610.0	
1	75543.1	75604.8	
2	75538.3	75591.7	
3	75530.2	75570.5	
4	75518.6	75542.5	
5	75511.4	75500.4	
6	75488.5	75460.1	
7	75464.1	75410.1	
8	75434.0		

Table S1e. Rotational line wavenumbers for the HI $j^{3}\Sigma_{0}^{-+}[1/2]5d\pi(\nu'=1)$ and $\nu'\Sigma'(\nu'=m+22) \leftarrow X^{1}\Sigma'(\nu''=0)$ spectra.

Table S1f. Rotational line wavenumbers for the HI $M^1\Pi_1$ [1/2]7s $\sigma(\nu'=0)$ and $V^1\Sigma^+(\nu'=m+29) \leftarrow \leftarrow X^1\Sigma^+(\nu''=0)$ spectra.

J'	<i>O</i> (<i>J</i>)	P (J)	<i>Q</i> (<i>J</i>)	R(J)	<u>S</u> (J)	<i>Q</i> (<i>J</i>)
			$M^1\Pi_1$			$V^1\Sigma^+$
0						77226.9
1	77149.2	77183.3	77210.64	77232.3		77219.7
2		77168.4	77211.09	77241.1	77245.8	77206.2
3		77152.2	77207.46	77249.3	77270.6	77185.7
4		77134.6	77204.14	77255.1	77296.2	77160.6
5			77200.43			77129.8
6						77089.6
7						
8						

J'	Q (J)	Q (J)
	$r^3\Pi_0$	$V^1\Sigma^+$
0		78655.2
1	78622.8	78650.4
2	78621.2	78641.2
3	78617.2	78631.6
4	78625.2	78604.7
5	78622.8	78590.8
6	78620.0	
7	78614.4	
8	78609.1	

Table S1g. Rotational line wavenumbers for the HI $r^3\Pi_0$ [1/2]7p $\sigma(v'=0)$ and $V^1\Sigma^+(v'=m+36) \leftarrow X^1\Sigma^+(v''=0)$ spectra.

Table S2.

a) New HI Rydberg states: Rydberg state specifications (Ry ^{2S+1}Λ_Ω[Ω_c]nlλ) (see main text), vibrational quantum numbers (ν'), symmetry, band origin (v⁰), rotational parameters (B',D'), relative intensities, quantum defect values (δ) and line series observed in Rydberg state spectra.

State							Quantum	Line
specifications	<i>v</i> '	Symmetry	v ⁰ /cm ⁻¹	B' /	<i>D</i> ′*10 ⁴	Int.	defect δ	series
				cm ⁻¹	/ cm ⁻¹			observed
$d^{3}\Pi_{1}[3/2] 6 p\sigma$	3	e	69691.6	6.08	3.7	vw	3.67	0,Q,S
		f	69691.6	5.93	18.0			P,R
$f^{3}\Delta_{2}$ [3/2]7p π	0	e	74500.9	5.58	-8.4	w	3.56	<i>O</i> , <i>Q</i> , <i>S</i>
		f	74509.4	5.69	35.8			P,R
$m^3\Pi_2[1/2]7s\sigma$	2	f	74484.1	5.10	-57.8	w	4.14	P,R
$m^3\Pi_1[1/2]7s\sigma$	2	e	74571.3	5.90		W	4.13	0,Q,S
		f	74581.8	5.81				P,R

b) Interacting Rydberg and ion-pair states: Rydberg and ion-pair states specifications (Ry ${}^{2S+1}\Lambda_{\Omega}[\Omega_c]nl\lambda$) (see main text), vibrational quantum numbers (ν'), symmetry, band origin (ν^0), rotational parameters (B',D'), relative intensities, quantum defect values (δ) and line series observed in Rydberg state spectra.

State							Quantum	Line
specifications	<i>v</i> '	Symm.	v ⁰ /cm ⁻¹	B' /	D'*10 ⁴	Int.	defect δ	series
				cm ⁻¹	/ cm ⁻¹			observed
$P^{1}\Delta_{2}$ [1/2]4f π	0	e	75124.9 ª	6.11 ª	9.8 ^a	ms	1.20	<i>O</i> , <i>Q</i> , <i>S</i>
			75123.0 ь	6.27 в	30.9 ^b			
		f	75124.6ª	6.15 a	7.8 ª			P,R
$k^{3}\Pi_{2}$ [1/2]5d δ	1	e	75123.0ª	6.26 ª	7.9 ^a 7.0 ^b	ms	2.39	Q,S
			75124.0 ^b	6.26 ^b				
$j^{3}\Sigma_{0}^{+}[1/2]5d\pi$	1	e	75546.1 ª	5.14 ª	54.0 ª	vs	2.36	Q
			75546.0 ^b	5.16 ^b	54.8 ^b			
$V^1\Sigma^+$	<i>m</i> +22	e	75612.6 ª	2.80 ª	12.0 ª	m		
			75610.0 ^b	2.98 ^b	38.8 b			
$M^{1}\Pi_{1}$ [1/2]7s σ	0	e	77212.1 ª	5.97 ª	-81.0 ª	vw	3.96	<i>O</i> , <i>Q</i> , <i>S</i>
			77214.0 ^b	5.72 ^b	-50.6 b			
		f	77211.9ª	5.87 ª	-20.0 ª			P,R
$V^1\Sigma^+$	<i>m</i> +29	e	77226.8 ª	2.98 ª	-26.0 ª	m		Q
			77224.0 ь	3.46 ^b	38.4 ^b			
$r^{3}\Pi_{0}$ [1/2]7p σ	0	e	78623.0ª	6.30 ª	28.0 ª	s	3.76	Q
			78625.0 ^b	6.33 ^b	35.8 b			
$V^1\Sigma^+$	<i>m</i> +36	e	78655.0 ª	3.90 ª	-65.0 ª	ms		Q
			78654.0 ^b	3.48 ^b	-27.1 ^b			

^aUnderperturbed(perturbed) values; this work

^b Derperturbed values; this work

$P^{1}\Delta_{2}[1/2]4f\pi(v'=0) \iff k^{3}\Pi_{2}[1/2]5d\delta(v'=1)$			$d\delta(v'=1) \qquad j^{3}\Sigma_{0}^{-+}[1/2]5d\pi(v'=1) \leftrightarrow V^{1}\Sigma^{+}(v'=m+22)$							
J'	$\Delta E_{J'}$	<i>W</i> ₁₂	c_l^2	c_2^2		J'	$\Delta E_{J'}$	<i>W</i> ₁₂	c_I^2	c_2^2
2	-1.4	0.7	0.647	0.353		0	64.5	6.4	0.990	0.010
3	1.6	0.7	0.753	0.247		1	61.7	6.4	0.989	0.011
4	2.5	0.7	0.917	0.083		2	53.4	6.4	0.986	0.014
5	3.5	0.7	0.960	0.040		3	40.3	6.4	0.974	0.026
6	4.8	0.7	0.979	0.021		4	23.9	6.4	0.923	0.077
7	8.1	0.7	0.993	0.007		5	-12.8	6.4	0.438	0.562
						6	-28.4	6.4	0.947	0.053
						7	-54.0	6.4	0.986	0.014

Table S3. State interactions; J' level proximity $(\Delta E_{J'} = E_J(1) - E_J(2) / \text{cm}^{-1})$, interaction strength $(W_{12} / \text{cm}^{-1})$ and fractional state mixing (c_1^2, c_2^2) .

M	$M^{1}\Pi_{1} [1/2]7s\sigma(\nu'=0) \leftrightarrow V^{1}\Sigma^{+}(\nu'=m+29)$			<i>m</i> + 29)	$r^{3}\Pi_{0}$ [1	$/2]7p\sigma(v'=$	$0) \leftrightarrow V^1 \Sigma^1$	+(v'=m+3)	6)
J'	$\Delta E_{J'}$	W_{12}	c_1^2	c_2^2	J'	$\Delta E_{J'}$	W_{12}	c_I^2	c_2^2
1	9.1	0.6	0.996	0.004	1	27.6	7.2	0.927	0.073
2	-4.9	1.0	0.959	0.041	2	20.0	7.2	0.848	0.152
3	-21.8	1.4	0.996	0.004	3	14.4	7.2	0.531	0.469
4	-43.5	1.8	0.998	0.002	4	-20.5	7.2	0.857	0.143
5	-70.5	2.2	0.999	0.001	5	-40.1	7.2	0.967	0.033
					6	-59.9	7.2	0.985	0.015

State	v'	v^0/cm^{-1} $B'/$ $D'*10^4$		D'*10 ⁴	Quantum	Refs.
specifications			cm ⁻¹	/cm ⁻¹	defect δ	
$[\Omega_c]ns\sigma \ (n=6,7)$						
b ³ Π ₂ [3/2]6sσ	0	55 833.1	6.348		4.02	[1]
	1	58 040.5	6.173		4.02	[1]
b ³ Π ₁ [3/2]6sσ	0	56 738.3	6.427		3.99	[1]
	1	58 937±20			3.98	[1]
b ³ Π ₀ [±] [1/2]6sσ	0	60 857.9	6.426		4.03	[1]
	1	63 064.0	6.245		4.03	[1]
	3	67 150.3	5.693	2.3	4.02	[2]
$C {}^{1}\Pi_{1}[1/2]6s\sigma$	0	62 325±10			3.97	[1]
	1	64 508±10			3.89	[1]
<i>m</i> ³ Π ₂ [3/2]7sσ	0	70 837.6/70 841.5	$6.11/6.21\pm0.04$	1.94/ 12± 5	4.09	[3]/[4]
	1	72 697.2	6.014	2.30	4.12	[3]
	2	74484.1	5.10	-57.8	4.14	[11]
$m^{3}\Pi_{1}[3/2]7s\sigma$	0	71 287.3	6.254	3.18	4.04	[3]
	1	72 924.8/72 945.0	6.205/6.16	4.6/-16	4.09	[3]/[6]
	2	74571.3	5.90		4.13	[11]
$M^{1}\Pi_{1}$ [1/2]7s σ	0	77212.1	5.97	-81.0	3.96	[11]
$[\Omega_c]np\sigma \ (n=6,7)$						
<i>d</i> ³ П ₂ [3/2]6р <i>σ</i>	0	63 854.9	6.065	1.7	3.65	[2]
	1	66 009.4	5.926	1.5	3.65	[2]
<i>d</i> ³ Π ₁ [3/2]6pσ	0	63 883				[2]
	3	69691.6	6.08	3.7	3.67	[11]
$d {}^{3}\Pi_{0}^{+}[1/2]6p\sigma$	0	69 157	6.117	2.1	3.65	[2]
	1	70 988.2	5.79 ± 0.12	-290 ± 40	3.67	[4]
$D^{1}\Pi_{1}[1/2]6p\sigma$	0	69 244.5	6.198	2.1	3.65	[2]/[3]
	1	71 382.4	6.052	1.92	3.65	[3]
	2	73 412.3	5.937	12.6	3.65	[3]

Table S4. Summary of Rydberg states and spectra, previously observed and reassigned^a. Rydberg state specifications ($Ry^{2S+1}\Lambda_{\Omega}[\Omega_c]nl\lambda$), vibrational quantum numbers (v'), band origin (v^0), rotational parameters (B', D'), quantum defect values (δ) and references of previous observations.

<i>r</i> ³ Π ₁ [3/2]7pσ	0	74 320	6.040	-4.48	3.59	[3]
<i>r</i> ³ Π ₀ [1/2]7pσ	0	78623.0	6.30	28.0	3.76	[11]
$[\Omega_c]n\mathrm{p}\pi \ (n=6,7)$						
<i>E</i> ¹ Σ ⁺ [1/2]6pπ	0	70 850.5/70 866.3	$6.00/5.94 \pm 0.17$	128/-11±21	3.55	[3]/[4]/[10]
	1	72 650.8/ 72 654.3	5.29/5.19	4.63/-16	3.57	[3]/[4]/[10]
	3	75 982.3	4.10	-30	3.61	[10]
$f^{3}\Delta_{3}[3/2]6p\pi$	0	64 572.6	5.715	-7.6	3.61	[2]
$f^{3}\Delta_{2}[3/2]6p\pi$	0	64 693.9/64 691	$6.737/6.80 \pm 0.03$	$10.6/2.9 \pm 1.2$	3.60	[3]/[5]
	1	66 610	6.17±0.01	15±3	3.62	[5]/[7]
$f^{3}\Delta_{1}[1/2]6p\pi$	0	69 687.0/69 699.9	6.135/6.31 ± 0.02	$1.92/4.6 \pm 1.0$	3.62	[2]/[3]/[4]
	1	71 780.5	5.957	9.73	3.62	[3]
$F^{1}\Delta_{2}[1/2]6p\pi$	0	70 228.3/70 223.6	$6.30/6.32\pm0.01$	$1.2/2.6\pm0.6$	3.59	[2]/[3]/[4]
	1	72 324.0	6.13	0.0003	3.59	[6]
	2	74 272.8	5.93	77	3.59	[11]
$g^{3}\Sigma_{0+}^{-}[3/2]6p\pi$	0	66 022.6	6.110	2.5	3.51	[3]
	1	67 704.4	5.62	28	3.54	[3]
<i>g</i> ³ Σ ⁻ 1 [±] [1/2]6pπ	0	68 908.8	6.06	1.7	3.67	[3]
$f^3\Delta_2[3/2]7p\pi$	0	74500.9	5.58	-8.4	3.56	[11]
g ³ Σ ⁻ ₀₊ [3/2]7pπ	0	74 735.2	6.10	14.8	3.52	[8]/[10]
	1	76 364.4	4.36	-38	3.61	[10]
$g^{3}\Sigma_{1}^{-1} [1/2]7p\pi$	0	79 145.1	5.77	25.9	3.68	[10]
$F^1\Delta_2[1/2]7p\pi$	0	79 923.5	6.74	10	3.54	[10]
$[\Omega_c] n \mathrm{d}\sigma \ (n=5)$						
$N^{1}\Pi_{1}[1/2]5d\sigma$	0	71 526.2	6.163	1.74	2.50	[3]
	2	74 899.2	6.17	6.2	2.56	[8]
$[\Omega_c] n \mathrm{d}\pi \ (n=5)$						
$H^{1}\Sigma^{+}[3/2]5\mathrm{d}\pi$	0	68 277.3	5.78	5.0	2.34	[3]/[10]
	1	70 242.1/70 236.1	$5.95/6.34 \pm 0.01$	$125/1100 \pm 20$	2.36	[3]/[4]/[10]
	2	72 217.6	4.35	24.2	2.36	[3]/[10]
$i^{3}\Delta_{3}[3/2]5d\pi$	0	68 326.2	6.21	-25	2.34	[9]

$I^{1}\Delta_{2}[1/2]5d\pi$	0	71 990/71 989.4	$6.312/6.31\pm0.01$	$2.7/2.4 \pm 0.1$	2.47	[7]/[4]
	2	76 080.8	5.82	9	2.47	[10]
	3	77 954.1	5.55	-2.6	2.48	[10]
$j {}^{3}\Sigma^{-}_{0+}[1/2]5d\pi$	0	73 254.9/73 252.0	5.71/5.63	47.5/46	2.37	[6]
	1	75546.1	5.14	54.0	2.36	[11]
	2	77 346.0	5.09	-79	2.37	[10]
$H^{1}\Sigma^{+}[3/2]6d\pi$	1	77 615.4	5.56	90	2.36	[10]
$i^3\Delta_2[3/2]6d\pi$	0	75 246.1	6.14	5	2.42	[10]
$[\Omega_c] n \mathrm{d}\delta \ (n=5)$						
$k {}^{3}\Pi_{0}{}^{\pm}[3/2]5d\delta$	0	68 110.7	6.24	3	2.35	[3]
	1	70 320.4/70 310.8	$5.058/5.13 \pm 0.03$	$-21/-4 \pm 9$	2.35	[3]/[4]
	2	72 353.1/72 355.6	5.650/5.86	-5.49/42	2.35	[3]
$k {}^{3}\Pi_{1}[3/2]5d\delta$	0	68 991.8	6.459	3.3	2.28	[3]
	1	71 125.0/71 126.4	$6.30/6.22 \pm 0.02$	4.82/-2.6 ±1.6	2.27	[3]/[4]
	2	73 180.7/73 176.7	6.034/6.13	8.72/23	2.27	[3]
$k {}^{3}\Pi_{2}[1/2]5d\delta$	0	73 360.9	6.403	6.123	2.36	[3]
	1	75123.0	6.26	7.9	2.39	[11]
$K {}^{1}\Pi_{1}[1/2]5\mathrm{d}\delta$	0	74 282.1	6.255	6.09	2.28	[3]
$[\Omega_c]n\mathrm{f}\pi \ (n=4,5)$						
$O^{1}\Sigma^{+}[3/2]4f\pi$	0	71 301.9/71 294.7	$5.82/6.25\pm0.22$	/ 33± 26	1.04	[7]/[4]
	1	73 383.6/73 384.2	5.819/5.70	4.46/0	1.04	[3]/[7]/[6]
	2	75 410.1	5.19	38	1.04	[10]
	3	77 448.2	4.56	-51	1.03	[10]
<i>p</i> ³ Δ ₂ [3/2]4fπ	0	73 081.7	6.35	2.0	0.8	[6]/ [11]
$P^1\Delta_2[1/2]4\mathrm{f}\pi$	0	75 124.6	6.15	8	1.20	[10]
	2	78 502.6	5.67	-52	1.27	[10]
$q^{3}\Sigma_{0+}[1/2]4f\pi$	0	76 234.4	5.50	160	1.08	[10]

New states.

Table S5. Summary of ion-pair states and spectra, previously observed. State specifications, vibrational quantum numbers (v'=m+i; *m* unknown integer), band origin (v^0), rotational parameters (B', D') and references.

State	v' ^a	v ⁰ /cm ⁻¹	B '/	D'*10 ⁴	Refs.
specification			cm ⁻¹	/cm ⁻¹	
$V^{1}\Sigma^{+}_{0^{+}}(\sigma\pi^{4})\sigma^{*}$	m	68 004.4	2.84	2.0	[2]/[3]
	<i>m</i> +1	68 489.4	3.3		[2]/[3]
	<i>m</i> +2	68 927.3	3.19	-1.1	[2]/[3]
	<i>m</i> +3	69 418.5	3.25		[2]/[3]
	<i>m</i> +4	69 909.9/69 903.3	$3.273/2.94\pm0.18$	6.54/ 10± 40	[2]/[3]/[4]
	<i>m</i> +5	70 512.1/70 511.0	$3.800/\ 3.66\pm 0.02$	-70.2/ 83± 4	[3]/[4]
	<i>m</i> +6	70 948.6/70 952.3	$4.09/3.56 \pm 0.10$	44/24±10	[3]/[4]
	<i>m</i> +7	71 478.4	2.95 ± 0.10	-4 ± 5	[4]
	<i>m</i> +8	71 920.3/71 924.4	$3.97/4.17 \pm 0.17$	$158/270 \pm 70$	[3]/[4]
	<i>m</i> +9	72 022.4/72 023.2	$2.792/2.84 \pm 0.03$	$-4.61/1 \pm 4$	[3]/[4]
	<i>m</i> +10	72 506.0/72 508.8	4.106/4.25	14.7/80	[3]/[6]
	<i>m</i> +11	72 923.0	3.43	19	[6]
	<i>m</i> +12	73 110.8	4.34	10	[6]
	<i>m</i> +13	73 457.8/73 459.1	3.177/4.52	-23.7/89	[3]/[6]
	<i>m</i> +14	73 589.5/73 590.8	2.294/2.23	-11.5/0.0	[3]/[6]
	<i>m</i> +15	73 822.7/73 831.8	3.679/4.14	-2.25/90	[3]/[6]
	<i>m</i> +16	74 090.0/74 091.0	3.724/3.71	5.8/22.6	[3]/[8]
	<i>m</i> +17	74 372.0	3.9	4.2	[8]
	<i>m</i> +18	74 615.4	3.76	3.67	[8]
	<i>m</i> +19	74 924.0	3.05	3.83	[8]
	<i>m</i> + 20	75 025.4	3.02	-33	[10]
	<i>m</i> + 21	75 189.5	2.41	1423	[10]
	<i>m</i> + 22	75612.6	2.80	12.0	[11]
	<i>m</i> + 23	75 822.0	2.79	63	[10]
	<i>m</i> + 24	75 919.1	3.16	-27	[10]
	<i>m</i> +26	76 479.9	2.67	-31	[10]
	<i>m</i> + 29	77 226.8	3.13	14	[10]
	<i>m</i> + 31	77 795.6	3.01	28	[10]

<i>m</i> + 32	77 934.8	2.80	11	[10]
<i>m</i> + 35	78 585.1	2.61	-54	[10]
<i>m</i> +36	78655.0	3.90	-65.0	[11]

a. Vibrational quantum numbers are marked as v'=m+i for positive integer numbers of *i* ranging from zero for the lowest vibrational level observed and *m* as an unknown positive integer.

New states.

References:

- [1] S.G. Tilford, M.L. Ginter, A.M. Bass, J. Mol. Spectrosc. 34 (1970) 327.
- [2] M.L. Ginter, S.G. Tilford, A.M. Bass, J. Mol. Spectrosc. 57 (1975) 271.
- [3] D.S. Ginter, M.L. Ginter, S.G. Tilford, J. Mol. Spectrosc. 92 (1982) 40.
- [4] H. R. Hróðmarsson, H. Wang, and Á. Kvaran, J. Mol. Spectrosc. 5 (2013) 290.
- [5] S.A. Wright, J.D. McDonald, J. Chem. Phys. 101 (1994) 238-245.
- [6] H. R. Hróðmarsson, H. Wang, and Á. Kvaran, J. Chem. Phys. 142 (2015) 244312.
- [7] S.T. Pratt, M.L. Ginter, J. Chem. Phys. 102 (1995) 1882-1888.
- [8] A. Hafliðason, M-X Jiang and Á, Kvaran, Phys. Chem. Chem. Phys. 21 (2019) 23154.
- [9] P. M. Regan, D. Ascenzi, E. Wrede, P. A. Cook, M. N. R. Ashfold and A. J. Orr-Ewing, *Phys. Chem. Chem. Phys.* 2 (2000) 23.
- [10] M-X. Jiang, A. Hafliðason and Á, Kvaran, J. Mol. Spectrosc. 372 (2020) 111329.
- [11] This work