Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary information: Intramolecular hydrogen transfer in DNA induced by site-selective resonant core excitation

December 16, 2021

Table 1: Transition analysis at the carbon K-edge. Excitation energies are given in eV. f is the oscillator strength and L is the lowest unoccupied molecular orbital (LUMO). Only transitions with the high amplitudes are given.

excitation center	excitation energy (f)	transition (amplitude)
FU - C6	$287.01 \ (0.059)$	$1s \to L+2 \ (0.97)$
A - C5	287.17(0.033)	$1s \to L+1 \ (0.91)$
A - C8	287.36(0.06)	$1s \to L+1 \ (0.61)$
A-C2	287.53(0.07)	$1s \to L+1 \ (0.94)$
A - C4	$287.61 \ (0.056)$	$1s \to L+0 \ (0.87)$
G-C8	$287.65\ (0.052)$	$1s \to L+6 \ (0.63)$
G-C4	287.9(0.051)	$1s \to L+3 \ (0.63)$
FU - C5	288.11 (0.04)	$1s \to L+2 \ (0.92)$
A - C6	288.32(0.073)	$1s \to L+0 \ (0.94)$
FU - C4	$288.48 \ (0.062)$	$1s \to L+2 \ (0.88)$
G-C6	$288.56 \ (0.067)$	$1s \to L+3 \ (0.83)$
G-C2	$289.13 \ (0.078)$	$1s \to L+6 \ (0.83)$
G-C5'	$289.71 \ (0.05)$	$1s \to L+11 \ (0.58)$
FU - C2	289.72(0.082)	$1s \to L+5 \ (0.95)$
A - C5'	$289.91 \ (0.048)$	$1s \to L+7 \ (0.77)$
FU - C3'	$289.97 \ (0.056)$	$1s \to L+7 \ (0.7)$
A - C4'	$290.45\ (0.043)$	$1s \to L+13 \ (0.59)$
A - C3'	290.47 (0.033)	$1s \to L+11 \ (0.46)$
FU - C4'	290.48(0.048)	$1s \to L+12 \ (0.34)$
FU - C6	290.7(0.028)	$1s \to L+12 \ (0.84)$

excitation center	excitation energy (f)	transition (amplitude)
A - N7	400.11 (0.042)	$1s \to L+0 \ (0.77)$
A - N3	400.19(0.046)	$1s \to L+1 \ (0.81)$
G-N7	400.22(0.044)	$1s \to L+3 \ (0.62)$
G-N3	400.96(0.033)	$1s \to L+3 \ (0.6)$
A - N6	401.91(0.02)	$1s \to L+0 \ (0.97)$
G-N2	401.98(0.018)	$1s \to L+6 \ (0.89)$
FU - N3	402.19(0.021)	$1s \to L+2 \ (0.94)$
A - N9	402.34(0.029)	$1s \to L+1 \ (0.77)$
A - N1	402.58(0.031)	$1s \to L+0 \ (0.86)$
G-N1	402.72(0.022)	$1s \to L+3 \ (0.79)$
G-N9	402.86(0.032)	$1s \to L+6 \ (0.86)$
FU - N1	402.9(0.019)	$1s \to L+2 \ (0.93)$
A - N6	404.63(0.015)	$1s \to L+8 \ (0.87)$
G-N1	404.67(0.027)	$1s \to L+14 \ (0.84)$
FU - N3	405.36(0.024)	$1s \to L+24 \ (0.46)$
A - N1	405.43(0.027)	$1s \to L+8 \ (0.81)$
A - N6	405.47 (0.028)	$1s \to L+10 \ (0.6)$
FU - N1	406.5 (0.018)	$1s \to L+15 \ (0.54)$

Table 2: Transition analysis at the nitrogen K-edge. Excitation energies are given in eV. f is the oscillator strength and L is the lowest unoccupied molecular orbital (LUMO). Only transitions with the high amplitudes are given.

Table 3: Transition analysis at the oxygen K-edge. Excitation energies are given in eV. f is the oscillator strength and L is the lowest unoccupied molecular orbital (LUMO). Only transitions with the high amplitudes are given.

excitation center	excitation energy (f)	transition (amplitude)
FU - O4	$531.61 \ (0.038)$	$1s \to L+2 \ (0.9)$
G - O6	$532.15\ (0.027)$	$1s \to L+3 \ (0.72)$
FU - O2	$532.91\ (0.033)$	$1s \to L+5 \ (0.95)$
O4''	534.37(0.018)	$1s \to L+11 \ (0.59)$
O2''	534.7(0.024)	$1s \to L+7 \ (0.86)$
A - O4'	$536.66\ (0.028)$	$1s \to L+13 \ (0.53)$
FU - O4'	$537.06\ (0.028)$	$1s \to L+16 \ (0.34)$
A - O5'	$537.24\ (0.039)$	$1s \to L+13 \ (0.7)$
FU - O3'	$537.25\ (0.036)$	$1s \to L+12 \ (0.47)$
O1''	537.29(0.043)	$1s \to L+17 \ (0.51)$
G - O5'	537.45(0.032)	$1s \to L+9 \ (0.34)$
FU - O4'	537.68(0.027)	$1s \to L+20 \; (0.24)$

Table 4: Transition analysis at the fluorine K-edge. Excitation energies are given in eV. f is the oscillator strength and L is the lowest unoccupied molecular orbital (LUMO). Only transitions with the high amplitudes are given.

excitation center	excitation energy (f)	transition (amplitude)
FU - F5	$688.9\ (0.035)$	$1s \to L+12 \ (0.57)$

(a) LUMO

(d) LUMO+3

(j) LUMO+10

(m) LUMO+13

(p) LUMO+16

(e) LUMO+5

(h) LUMO+8

(k) LUMO+11

(n) LUMO+14

(q) LUMO+17

(c) LUMO+2

(f) LUMO+6

(i) LUMO+9

(l) LUMO+12

(o) LUMO+15

(r) LUMO+20

(s) LUMO+24

Figure 1: Canonical orbitals for the most relevant excited states with isosurface of $0.05~\mathrm{au}.$

5