PHYSICAL CHEMISTRY CHEMICAL PHYSICS

Electronic Supplementary Information

Nitrene formation is the first step of the thermal and photochemical decomposition reactions of organic azides

by

Juan Soto, Manuel Algarra and Daniel Peláez

CONTENTS

Table S1.....Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (C_s , MS-CASPT2/CASSCF(14,12)/ANO-RCC).

Table S2Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (Cs, MS-CASPT2/CASSCF(16,14)/ANO-R).

Table S3Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (C_s , MS-CASPT2/ CASSCF(14,12)/ANO-R).^{a,b}

Table S4Internal coordinates of the species represented in Figure 3. CASSCF(16,14)/ANO-RCC.

Table S5Internal coordinates of the species represented in Figure 3. CASSCF(16,14)/ANO-R.

Table S6Internal coordinates of the species represented in Figure 3. CASSCF(14,12)/ANO-RCC.

Table S7Internal coordinates of the species represented in Figure 3. CASSCF(14,12)/ANO-R.

Table S8Internal coordinates of the nitrene species represented in Figure 3.

Table S9Set of nonredundant internal coordinates of isopropyl azide.

Table S10aAssignment of the calculated fundamental modes of TS1.

Table S10bAssignment of the calculated fundamental modes of TSx.

Fig. S1 Intrinsic reaction coordinate connecting reactant and products via the transition state **TSx**. IRC:B3LYP/def2-TZVPP.

Fig. S2 SA2-CASSCF(8e, 7o)/ANO-RCC potential energy curves...

Fig. S3 Atom numbering for Tables S4 to S10.

State	VE	$f_{\rm OSC}^{\rm c}$	Configuration ^d	W ^e
2 ¹ A'	5.90	4.22 10-4	$[n\pi]^1[\pi_{\sigma}^*]^1$	39
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	48
1 ¹ A"	4.49	8.47 10-4	$[n\pi]^{1}[\pi^{*}(\text{NNN})]^{1}$	89
2 ¹ A"	7.26	7.12 10-3	$[\pi(\text{NNN})]^1[\pi_\sigma^*]^1$	89
		SOC ^f		
1 ³ A'	4.68	0	$[n\pi]^1 [\pi_{\sigma}^*]^1$	75
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	15
2 ³ A'	5.38	0	$[n\pi]^1 [\pi_{\sigma}^*]^1$	15
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	73
1 ³ A"	4.19	16.82	$[n\pi]^1[\pi^*(\text{NNN})]^1$	88
2 ³ A"	6.89	16.52	$[\pi(\text{NNN})]^{l}[\pi_{\sigma}^{*}]^{l}$	89

Table S1. Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (C_s , MS-CASPT2).^{a,b}

^a $C_{\rm s}$ MP2/def2-TZVPP optimized geometry. ^bSA2-CASSCF(14e, 12o)/ANO-RCC reference wave function, IPEA=0.25. Imaginary shift = 0.1. °Oscillator strength. ^dMS-CASPT2 main electronic configurations of the excited states referred to the ground state configuration. °Weight of the configuration in %. Only contributions greater than 15% are included. ^fSpin orbit coupling constant in cm⁻¹.

State	VE	$f_{\rm OSC}^{\rm c}$	<i>Configuration^d</i>	W^e
2 ¹ A'	5.90	6.75 10-4	$[n\pi]^{1}[\pi_{\sigma}^{*}]^{1}$	40
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	48
1 ¹ A"	4.49	8.93 10-4	$[n\pi]^{1}[\pi^{*}(NNN)]^{1}$	88
2 ¹ A"	7.24	5.88 10-3	$[\pi(\text{NNN})]^{1}[\pi_{\sigma}^{*}]^{1}$	85
		SOC ^f		
1 ³ A'	4.66	0	$[n\pi]^{1}[\pi_{\sigma}^{*}]^{1}$	75
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	15
2 ³ A'	5.38	0	$[n\pi]^1[\pi_\sigma^*]^1$	15
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	75
1 ³ A"	4.18	16.22	$[n\pi]^{1}[\pi^{*}(NNN)]^{1}$	87
2 ³ A"	6.87	16.22	$[\pi(\text{NNN})]^1[\pi_\sigma^*]^1$	86

Table S2. Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (C_s , MS-CASPT2).^{a,b}

^aC_s MP2/def2-TZVPP optimized geometry. ^bSA2-CASSCF(16e, 14o)/ANO-R reference wave function, IPEA=0.25. Imaginary shift = 0.1. ^cOscillator strength. ^dMS-CASPT2 main electronic configurations of the excited states referred to the ground state configuration. ^cWeight of the configuration in %. Only contributions greater than 15% are included. ^fSpin orbit coupling constant in cm⁻¹.

State	VE	$f_{\rm OSC}{}^{\rm c}$	<i>Configuration^d</i>	W^e
2 ¹ A'	5.92	4.52 10-4	$[n\pi]^1[\pi_{\sigma}^*]^1$	40
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	48
1 ¹ A"	4.49	8.65 10-4	$[n\pi]^{1}[\pi^{*}(\text{NNN})]^{1}$	88
2 ¹ A"	7.27	7.07 10-3	$[\pi(\text{NNN})]^{1}[\pi_{\sigma}^{*}]^{1}$	85
		$\mathrm{SOC}^{\mathrm{f}}$		
1 ³ A'	4.69	0	$[n\pi]^1[\pi_{\sigma}^*]^1$	75
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	15
2 ³ A'	5.40	0	$[n\pi]^{1}[\pi_{\sigma}^{*}]^{1}$	15
			$[\pi(NNN)]^{1}[\pi^{*}(NNN)]]^{1}$	74
1 ³ A"	4.19	16.29	$[n\pi]^{1}[\pi^{*}(NNN)]^{1}$	88
2 ³ A"	6.90	16.23	$[\pi(\text{NNN})]^1[\pi_\sigma^*]^1$	87

Table S3. Vertical excitation (VE) energies in eV of the singlet and triplet states of isopropyl azide (C_s , MS-CASPT2).^{a,b}

 $^{{}^{}a}C_{s}$ MP2/def2-TZVPP optimized geometry. ${}^{b}SA2$ -CASSCF(14e, 12o)/ANO-R reference wave function, IPEA=0.25. Imaginary shift = 0.1. °Oscillator strength. ${}^{d}MS$ -CASPT2 main electronic configurations of the excited states referred to the ground state configuration. °Weight of the configuration in %. Only contributions greater than 15% are included. ^fSpin orbit coupling constant in cm⁻¹.

Table C4 Internel		· 41	
Table 54. Internal	coordinates of	the species re	presented in Figure 5.

Coordinate	M0	M1	TS1	TS0	ISC1
R2,1	1.519	1.499	1.488	1.448	1.445
R3,1	1.102	1.106	1.110	1.125	1.124
A3,1,2	102.1	102.6	102.5	91.6	91.4
R4,1	1.521	1.524	1.525	1.524	1.525
A4,1,2	111.4	111.3	111.7	116.1	116.2
Dh4,1,2,3	116.1	116.1	115.8	111.5	111.5
R5 , 1	1.521	1.524	1.525	1.524	1.525
A5,1,2	111.4	111.3	111.7	116.1	116.2
Dh5,1,2,3	-116.1	-116.1	-115.8	-111.5	-111.5
R6,4	1.084	1.082	1.082	1.085	1.086
A6,4,1	111.3	111.4	111.3	110.3	110.4
Dh6,4,1,2	66.8	69.2	71.6	75.1	75.7
R7,5	1.084	1.082	1.082	1.085	1.086
A7,5,1	111.3	111.4	111.3	110.3	110.4
Dh7,5,1,6	35.8	34.2	33.0	37.8	37.6
R8,4	1.083	1.083	1.083	1.084	1.084
A8,4,1	110.1	109.5	109.6	111.3	111.3
Dh8,4,1,6	119.5	119.7	119.8	119.2	119.2
R9,5	1.083	1.083	1.083	1.084	1.084
A9,5,1	110.1	109.5	109.6	111.3	111.3
Dh9,5,1,7	-119.5	-119.7	-119.8	-119.2	-119.2
R10,4	1.082	1.083	1.083	1.081	1.081
A10,4,1	110.8	111.0	111.0	110.6	110.6
Dh10,4,1,6	-120.7	-121.0	-121.0	-119.7	-119.7
R11,5	1.082	1.083	1.083	1.081	1.081
A11,5,1	110.8	111.0	111.0	110.6	110.6
Dh11,5,1,7	120.7	121.0	121.0	119.7	119.7
R12,2	1.241	1.463	1.651	1.876	1.889
A12,2,1	114.2	108.0	106.2	105.0	104.4
Dh12,2,1,3	180.0	180.0	180.0	180.0	180.0
R13,12	1.141	1.188	1.159	1.105	1.104
A13,12,2	173.3	119.6	117.8	160.3	164.1
Dh13,12,2,	180.0	180.0	180.0	180.0	180.0

^aCASSCF(16e, 14o)/ANO-RCC optimized geometry. R in Å; A and Dh in degrees. Numbering in Fig. S3.

Table S5. Inter	nai coordinate	s of the species	s represented in	Figure 3.	ISCI
Coordinate	NIU 1 517	1 400	1.100	1.50	1.440
RZ,1	1.51/	1.498	1.488	1.44/	1.449
R3,1	1.103	1.107	1.111	1.127	1.123
A3,1,2	102.1	102.7	102.5	91.3	92.1
R4,1	1.521	1.524	1.525	1.524	1.525
A4,1,2	111.4	111.3	111.7	116.2	116.1
Dh4,1,2,3	116.1	116.0	115.7	111.4	111.7
R5,1	1.521	1.524	1.525	1.524	1.525
A5,1,2	111.4	111.3	111.7	116.2	116.1
Dh5,1,2,3	-116.1	-116.0	-115.7	-111.4	-111.7
R6,4	1.085	1.083	1.083	1.086	1.086
A6,4,1	111.3	111.4	111.3	110.3	110.4
Dh6,4,1,2	66.9	69.2	70.1	75.7	75.4
R7 , 5	1.085	1.083	1.083	1.086	1.086
A7,5,1	111.3	111.4	111.3	110.3	110.4
Dh7,5,1,6	35.8	34.2	34.1	37.6	37.4
R8,4	1.084	1.084	1.084	1.085	1.085
A8,4,1	110.1	109.6	109.6	111.3	111.2
Dh8,4,1,6	119.4	119.7	119.7	119.2	119.2
R9,5	1.084	1.084	1.084	1.085	1.085
A9,5,1	110.1	109.6	109.6	111.3	111.2
Dh9,5,1,7	-119.4	-119.7	-119.7	-119.2	-119.2
R10,4	1.083	1.084	1.084	1.082	1.082
A10,4,1	110.8	111.0	111.0	110.6	110.6
Dh10,4,1,6	-120.7	-121.0	-120.9	-119.7	-119.8
R11,5	1.083	1.084	1.084	1.082	1.082
A11,5,1	110.8	111.0	111.0	110.6	110.6
Dh11,5,1,7	120.7	121.0	120.9	119.7	119.8
R12,2	1.241	1.457	1.660	1.887	1.883
A12,2,1	114.3	108.1	106.1	105.1	104.4
Dh12,2,1,3	180.0	180.0	180.0	180.0	180.0
R13,12	1.141	1.189	1.158	1.106	1.105
A13,12,2	173.3	119.8	117.8	159.3	163.2
Dh13,12,2.	180.0	180.0	180.0	180.0	180.0
-, , -,					

 Table S5. Internal coordinates of the species represented in Figure 3.

^aCASSCF(16e, 14o)/ANO-R optimized geometry. R in Å; A and Dh in degrees. Numbering in Fig. S3.

	1.1.	01	T / 1	1. 1	C /1	•	4 1	•	E.	2
1 9	ible	S6.	Internal	coordinates	of the	species t	enresented	1n	Figure	- 1
			meena	cooramates	or the	species i	epresentea		1 igaie	<i>.</i>

Coordinate	M0	M1	TS1	TS0	ISC1
R2,1	1.522	1.502	1.493	1.454	1.464
R3,1	1.079	1.082	1.085	1.098	1.095
A3,1,2	102.1	102.7	102.4	93.5	94.9
R4,1	1.521	1.524	1.525	1.525	1.525
A4,1,2	111.2	111.1	111.5	115.6	115.1
Dh4,1,2,3	116.4	116.4	116.1	112.5	113.0
R5,1	1.521	1.524	1.525	1.525	1.525
A5,1,2	111.2	111.1	111.5	115.6	115.1
Dh5,1,2,3	-116.4	-116.4	-116.1	-112.5	-113.0
R6,4	1.084	1.082	1.082	1.085	1.085
A6,4,1	111.4	111.4	111.4	110.5	110.6
Dh6,4,1,2	66.5	69.0	69.8	74.3	73.5
R7,5	1.084	1.082	1.082	1.085	1.085
A7,5,1	111.4	111.4	111.4	110.5	110.6
Dh7,5,1,6	35.6	34.0	33.9	37.1	36.9
R8,4	1.084	1.083	1.083	1.084	1.084
A8,4,1	110.0	109.5	109.6	111.1	111.1
Dh8,4,1,6	119.5	119.7	119.8	119.3	119.3
R9,5	1.084	1.083	1.083	1.084	1.084
A9,5,1	110.0	109.5	109.6	111.1	111.1
Dh9,5,1,7	-119.5	-119.7	-119.8	-119.3	-119.3
R10,4	1.082	1.083	1.083	1.081	1.082
A10,4,1	110.8	111.0	111.0	110.6	110.6
Dh10,4,1,6	-120.7	-121.1	-121.0	-119.8	-119.9
R11,5	1.082	1.083	1.083	1.081	1.082
A11,5,1	110.8	111.0	111.0	110.6	110.6
Dh11,5,1,7	120.7	121.1	121.0	119.8	119.9
R12,2	1.240	1.460	1.658	1.909	1.865
A12,2,1	114.2	108.1	106.1	104.6	104.7
Dh12,2,1,3	180.0	180.0	180.0	180.0	180.0
R13,12	1.141	1.188	1.158	1.104	1.105
A13,12,2	173.2	119.7	117.9	159.4	158.0
Dh13,12,2,	180.0	180.0	180.0	180.0	180.0

^aCASSCF(14e, 12o)/ANO-RCC optimized geometry. R in Å; A and Dh in degrees. Numbering in Fig. S3.

Coordinate	M0	Mİ	TS1	TS0	ISC1
R2,1	1.520	1.502	1.492	1.454	1.466
R3,1	1.080	1.083	1.086	1.098	1.096
A3,1,2	102.1	102.7	102.4	93.5	95.2
R4,1	1.521	1.524	1.525	1.525	1.525
A4,1,2	111.2	111.1	111.5	115.6	115.1
Dh4,1,2,3	116.4	116.3	116.0	112.5	113.1
R5,1	1.521	1.524	1.525	1.525	1.525
A5,1,2	111.2	111.1	111.5	115.6	115.1
Dh5,1,2,3	-116.4	-116.3	-116.0	-112.5	-113.1
R6,4	1.085	1.083	1.083	1.085	1.086
A6,4,1	111.4	111.4	111.4	110.5	110.7
Dh6,4,1,2	66.6	68.9	69.9	74.3	73.4
R7,5	1.085	1.083	1.083	1.085	1.086
A7,5,1	111.4	111.4	111.4	110.5	110.7
Dh7,5,1,6	35.6	34.0	33.9	37.1	36.8
R8,4	1.084	1.084	1.084	1.084	1.085
A8,4,1	110.0	109.5	109.6	111.1	111.0
Dh8,4,1,6	119.4	119.7	119.8	119.3	119.3
R9,5	1.084	1.084	1.084	1.084	1.085
A9,5,1	110.0	109.5	109.6	111.1	111.0
Dh9,5,1,7	-119.4	-119.7	-119.8	-119.3	-119.3
R10,4	1.083	1.084	1.084	1.081	1.082
A10,4,1	110.8	111.0	111.0	110.6	110.6
Dh10,4,1,6	-120.7	-121.1	-121.0	-119.8	-119.9
R11,5	1.083	1.084	1.084	1.081	1.082
A11,5,1	110.8	111.0	111.0	110.6	110.6
Dh11,5,1,7	120.7	121.1	121.0	119.8	119.9
R12,2	1.240	1.454	1.667	1.909	1.863
A12,2,1	114.3	108.2	106.0	104.6	104.7
Dh12,2,1,3	180.0	180.0	180.0	180.0	180.0
R13,12	1.141	1.189	1.157	1.104	1.106
A13,12,2	173.2	119.9	117.9	159.4	157.2
Dh13,12,2,	180.0	180.0	180.0	180.0	180.0

^aCASSCF(14e, 12o)/ANO-R optimized geometry. R in Å; A and Dh in degrees. Numbering in Fig. S3.

Coordinate	Nitrene T0	Nitrene S0	Nitrene S1
R2,1	1.472	1.445	1.448
R3,1	1.113	1.120	1.116
A3,1,2	106.0	106.0	104.5
R4,1	1.525	1.529	1.530
A4,1,2	109.8	110.4	110.8
Dh4,1,2,3	117.4	117.0	116.7
R5,1	1.525	1.529	1.530
A5,1,2	109.8	110.4	110.8
Dh5,1,2,3	-117.4	-117.0	-116.7
R6,4	1.084	1.083	1.083
A6,4,1	110.7	110.6	110.5
Dh6,4,1,2	63.7	64.4	64.7
R7 , 5	1.084	1.083	1.083
A7,5,1	110.7	110.6	110.5
Dh7,5,1,6	35.4	35.8	36.2
R8,4	1.083	1.083	1.083
A8,4,1	110.4	110.1	110.2
Dh8,4,1,6	119.8	119.8	119.7
R9,5	1.083	1.083	1.083
A9,5,1	110.4	110.1	110.2
Dh9,5,1,7	-119.8	-119.8	-119.7
R10,4	1.083	1.082	1.082
A10,4,1	111.0	110.9	110.9
Dh10,4,1,6	-120.2	-120.2	-120.1
R11,5	1.083	1.082	1.082
A11,5,1	111.0	110.9	110.9
Dh11,5,1,7	120.2	120.2	120.1

 Table S8. Internal coordinates of the nitrene species represented in Figure 3.

^aCASSCF(8e, 7o)/ANO-RCC optimized geometry. R in Å; A and Dh in degrees. Numbering of atoms in Fig. S3.

N٥	Symbol	Definition	Description
1	ν(NN)	R _{2,12}	N-N _w stretching
2	v(NN)	R _{12,13}	N-N stretching
3	v(CN)	R _{1,2}	C-N stretching
4	v(CH)	R _{1,3}	C-H α stretching
5	v(CC)	$\frac{1}{R} = R = 0$	C-C stretching
6	v(CC)	$\sqrt{2}^{(n_{1,4}, n_{1,5})}$	C-C stretching
	()	$\frac{1}{\sqrt{2}}(R_{1,4}+R_{1,5})$	Ū
7	$v_{as}(CH_2)$	$\frac{1}{\sqrt{2}}(R_{4,6} - R_{4,8})$	CH ₂ asym stretching
8	$v_{as}(CH_3)$	$\frac{\sqrt{2}}{\sqrt{6}} (2R_{4,10} - R_{4,6} - R_{4,8})$	CH_3 asym stretching
9	$v_{s}(CH_{3})$	$\frac{1}{\sqrt{2}}(R_{4,10} + R_{4,6} + R_{4,8})$	CH_3 sym stretching
10	$\nu_{as}(CH_2)$	$\frac{\sqrt{3}}{\frac{1}{\sqrt{2}}}(R_{5,7} - R_{5,9})$	CH ₂ asym stretching
11	$\nu_{\text{as}}(\text{CH}_3)$	$\frac{\sqrt{2}}{\frac{1}{\sqrt{6}}}(2R_{5,11} - R_{5,7} - R_{5,9})$	CH_3 asym stretching
12	$v_{s}(CH_{3})$	$\frac{1}{\sqrt{2}}(R_{5,11} + R_{5,7} + R_{5,9})$	CH_3 sym stretching
13	δ(CCH)	$\alpha^{1}_{2,3}$	$CCH\alpha$ def
14	$\delta_{\text{sym}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}}(\alpha_{4,10}^{4} + \alpha_{6,8}^{4} + \alpha_{6,10}^{4} - \alpha_{6,1}^{4} - \alpha_{10,1}^{4} - \alpha_{8,1}^{4})$	CH_3 sym def
15	$\delta_{\text{asym}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}}(2\alpha_{8,10}^{4} - \alpha_{6,8}^{4} - \alpha_{6,10}^{4})$	CH_3 asym def
16	$\delta'_{asym}(CH_3)$	$\frac{1}{\sqrt{2}}(\alpha_{6,10}^{4} - \alpha_{6,8}^{4})$	CH_3 asym def
17	$\delta_{\text{rock}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}} (2\alpha_{6,1}^4 - \alpha_{10,1}^4 - \alpha_{8,1}^4)$	CH_3 rocking
18	$\delta'_{\text{rock}}(\text{CH}_3)$	$\frac{1}{\sqrt{2}}(\alpha_{10,1}^{4} - \alpha_{8,1}^{4})$	CH_3 rocking
19	$\delta_{\text{sym}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}} (\alpha_{5,11}^{5} + \alpha_{7,9}^{5} + \alpha_{7,11}^{5} - \alpha_{7,1}^{5} - \alpha_{11,1}^{5} - \alpha_{9,1}^{5})$	CH_3 sym def
20	$\delta_{\text{asym}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}}(2\alpha_{9,11}^{5} - \alpha_{7,9}^{5} - \alpha_{7,11}^{5})$	CH_3 asym def
21	$\delta'_{asym}(CH_3)$	$\frac{1}{\sqrt{2}}(\alpha_{7,11}^{5} - \alpha_{7,9}^{5})$	CH_3 asym def
22	$\delta_{\text{rock}}(\text{CH}_3)$	$\frac{1}{\sqrt{6}}(2\alpha_{7,1}^{5} - \alpha_{11,1}^{5} - \alpha_{9,1}^{5})$	CH_3 rocking
23	$\delta'_{\text{rock}}(\text{CH}_3)$	$\frac{1}{\sqrt{2}}(\alpha_{11,1}^{5} - \alpha_{9,1}^{5})$	CH_3 rocking
24	δ(CCH)	$\frac{1}{\sqrt{2}}(\alpha_{3,4}^{1} - \alpha_{3,5}^{1})$	CCH def
25	δ(CNN)	$\alpha_{1,12}^2$	CNN def

Table S9. Set of nonredundant internal coordinates of isopropyl azide	le. ^a
--	------------------

$\begin{array}{cccc} 27 & \delta(\text{CCC}) & \alpha_{5,4}^{1} & & \text{CCC def} \\ 28 & \delta(\text{CCN}) & \alpha_{4,2}^{1} & & \text{CCN def} \\ 29 & \delta(\text{CCN}) & \alpha_{5,2}^{1} & & \text{CCN def} \\ 30 & \Gamma(\text{CN}) & \Gamma_{1-2} & & \text{torsion of N-N}_2 \text{ bond} \\ 31 & \Gamma(\text{CC}) & \Gamma_{1-2} & & \text{torsion of C-N bond} \\ 32 & \Gamma(\text{CS}) & \Gamma_{1-4} & & \text{torsion of CH}_3 \end{array}$	26	δ(NNN)	$\alpha_{2,13}^{12}$	NNN def
$\begin{array}{cccc} 28 & \delta(\text{CCN}) & \alpha_{4,2}^{1} & & \text{CCN def} \\ 29 & \delta(\text{CCN}) & \alpha_{5,2}^{1} & & \text{CCN def} \\ 30 & \Gamma(\text{CN}) & \Gamma_{1-2} & & \text{torsion of N-N}_2 \text{ bond} \\ 31 & \Gamma(\text{CC}) & \Gamma_{1-2} & & \text{torsion of C-N bond} \\ 32 & \Gamma(\text{CS}) & \Gamma_{1-4} & & \text{torsion of CH}_3 \end{array}$	27	δ(CCC)	$\alpha_{5,4}^{1}$	CCC def
29 $\delta(CCN)$ $\alpha_{5,2}^1$ CCN def30 $\Gamma(CN)$ Γ_{1-2} torsion of N-N2 bond31 $\Gamma(CC)$ Γ_{1-2} torsion of C-N bond32 $\Gamma(CS)$ Γ_{1-4} torsion of CH3	28	δ(CCN)	$\alpha_{4,2}^{1}$	CCN def
$\begin{array}{llllllllllllllllllllllllllllllllllll$	29	δ(CCN)	$\alpha_{5,2}^{1}$	CCN def
31 $\Gamma(CC)$ Γ_{1-2} torsion of C-N bond32 $\Gamma(CS)$ Γ_{1-4} torsion of CH ₃	30	Г (CN)	Γ ₁₋₂	torsion of N-N ₂ bond
32 Γ (CS) Γ_{1-4} torsion of CH ₃	31	Г(СС)	Γ ₁₋₂	torsion of C-N bond
	32	Г (CS)	Γ ₁₋₄	torsion of CH ₃
33 $\Gamma(CH_3)$ Γ_{1-5} torsion of CH ₃	33	Г (CH ₃)	Γ ₁₋₅	torsion of CH ₃

^aAtom numbering in Figure S3.

Table S10a. Assignment of the calculated fundamental modes of TS1.^{*a*}

TS1 ^b	PED ^c	TS1 ^d	PED ^c	Assignment
3240	48(8)+48(11)	3239	48(8)+48(11)	CH ₃ asym stretching
3238	48(8)+48(11)	3236	48(8)+48(11)	CH_3 asym stretching
3210	49(7)+49(10)	3211	49(7)+49(10)	CH ₂ asym stretching
3201	49(7)+49(10	3201	49(7)+49(10	CH ₂ asym stretching
3156	47(9)+47(12)	3155	47(9)+47(12)	CH ₃ sym stretching
3149	47(9)+47(12)	3148	47(9)+47(12)	CH ₃ sym stretching
2795	99(4)	3065	98(4)	C-H α stretching
2301	99(2)	2312	99(2)	N-N stretching
1618	23(15)+23(16)+23(20)+23(21)	1619	19(15)+27(16)+19(20)+27(21)	CH₃ asym def
1612	23(15)+23(16)+23(20)+23(21)	1613	27(15)+19(16)+27(20)+19(21)	CH₃ asym def
1602	38(16)+38(21)	1601	39(16)+39(21)	CH ₃ asym def
1599	38(15)+38(20)	1599	39(15)+39(20)	CH ₃ asym def
1537	46(14)+46(19)	1537	46(14)+46(19	CH ₃ sym def
1523	44(14)+44(19)	1522	44(14)+44(19)	CH ₃ sym def
1370	20(3)+29(13)	1413	16(3)+47(13)	$CCH\alpha$ def
1354	21(5)+50(24)	1396	13(5)+64(24)	CCH def
1286	29(17)+29(22)+11(28)	1294	11(6)+22(17)+22(22)+16(27)	CCN def
1211	30(5)+11(18)+11(23)+16(24)	1221	38(5)+12(18)+12(23)+10(28)+10(29)	CCH def
1113	28(13)+22(18)+22(23)	1130	29(13)+21(18)+21(23)	CH ₃ rocking
1005	37(5)+28(18)+28(23)	1006	33(5)+22(18)+22(23)	CH ₃ rocking
986	33(17)+33(22)+25(24)	993	29(17)+29(22)+18(24)	CH ₃ rocking
941	17(3)+32(6)+25(13)	958	26(3)+33(6)+16(13)	C-C stretching
783	46(3)+35(6)+14(13)	790	49(3)+36(6)	C-C stretching
568	24(25)+22(28)+22(29)	577	24(25)+22(28)+22(29)	CCN def
479	44(28)+44(29)	476	44(28)+44(29)	CCN def
398	73(27)	399	72(27)	CCC def
279	22(25)+24(26)+15(32)+15(33)	276	21(25)+18(26)+22(32)+22(33)	CNN + NNN def
252	14(26)+27(32)+27(33)	253	19(26)+21(32)+21(33)	torsion of CH_3
242	59(30)+20(31)	232	34(30)+14(31)+18(32)+18(33)	torsion of N-N ₂ bond
220	47(32)+47(33)	220	20(30)+37(32)+37(33)	torsion of CH ₃
114	45(25)+45(26)	113	45(25)+46(26)	CNN + NNN def
86	39(30)+58(31)	85	39(30)+60(31)	torsion of C-N bond
421 i	60(1)+13(3)+11(13)+8(25)	369 i	68(1)+11(3)+6(13)+8(25)	

^aAssignment of vibrational modes according to the set of internal coordinates given in Table S9. ^bFrequencies of TS1 in cm⁻¹ [CASSCF(16e,14o)]. ^cWeight of the potential energy distribution; in parenthesis: coordinate number. ^dFrequencies of TS1 in cm⁻¹ CASSCF(14e,12o).

TSx ^b	PED ^c	TSx ^d	PED ^c	Assignment
3124	48(8)+48(11)	3191	47(8)+47(11)	CH ₃ asym stretching
3123	48(8)+48(11)	3190	47(8)+47(11)	CH_3 asym stretching
3089	48(7)+48(10)	3155	47(7)+47(10)	CH ₂ asym stretching
3082	48(7)+48(10	3150	48(7)+48(10	CH ₂ asym stretching
3029	47(9)+47(12)	3070	48(9)+48(12)	CH_3 sym stretching
3023	47(9)+47(12)	3066	48(9)+48(12)	CH ₃ sym stretching
2705	99(4)	2762	99(4)	C-H α stretching
2366	99(2)	2116	92(2)	N-N stretching
1498	38(15)+38(20)	1511	24(15)+21(16)+24(20)+21(21)	CH ₃ asym def
1494	37(16)+37(21)	1508	22(15)+21(16)+22(20)+21(21)	CH ₃ asym def
1479	46(15)+46(20)	1490	40(15)+40(20)	CH ₃ asym def
1477	46(16)+46(21)	1490	39(16)+39(21)	CH ₃ asym def
1404	47(14)+47(19)	1403	47(14)+47(19)	CH ₃ sym def
1386	47(14)+47(19)	1390	44(14)+44(19)	CH ₃ sym def
1335	43(3)+11(6)+14(25)	1374	45(3)+12(6)+13(27)	$CCH\alpha$ def
1182	34(5)+14(24)+15(28)+15(29)	1219	39(5)+13(24)+14(28)+14(29)	CCH def
1167	34(17)+34(22)	1175	33(17)+33(21)	CCN def
1079	13(17)+13(22)+53(2	1093	12(17)+12(22)+57(24)	CCH def
1056	18(3)+33(18)+33(23)	1068	14(3)+34(18)+34(23)	CH ₃ rocking
915	32(5)+21(18)+21(23)	931	32(5)+30(18)+30(23)	CH ₃ rocking
897	23(17)+23(22)+25(2	900	29(17)+29(22)+29(24)	CH ₃ rocking
829	44(6)+25(13)+11(17)+11(22)	839	70(6)+10(13)	C-C stretching
721	14(3)+36(13)	698	13(3)+13(6)+39(13)	C-C stretching
503	16(25)+20(28)+20(2	508	11(3)+23(13)+16(29)+19(28)+19(29)	CCN def
491	43(28)+43(29)	502	42(28)+42(29)	CCN def
378	72(27)	376	72(27)	CCC def
255	24(25)+34(26)	259	21(25)+18(26)+23(32)+23(33)	CNN + NNN def
242	12(28)+12(29)+48(30)+20(3)	244	14(28)+14(29)+41(30)+23(31)	torsion of CH ₃
219	20(26)+29(32)+29(3	225	25(26)+20(32)+20(33)	torsion of N-N ₂ bond
182	43(32)+43(33)	187	42(32)+42(33)	torsion of CH ₃
118	53(32)+30(33)	109	49(25)+33(26)	CNN + NNN def
75	46(30)+51(31)	77	47(30)+48(31)	torsion of C-N bond
418 i	14(1)+18 (3)+39(13)	604 i	16(1)+17(3)+10(4)+38(13)	

Table S10b. Assignment of the calculated fundamental modes of TSx.^a

^aAssignment of vibrational modes according to the set of internal coordinates given in Table S9. ^bFrequencies of TSx in cm⁻¹ [B3LYP/def2-TZVPP)]. ^cWeight of the potential energy distribution; in parenthesis: coordinate number. ^dFrequencies of TSx in cm⁻¹ MP2/def2-TZVPP.

Fig. S1 Intrinsic reaction coordinate connecting reactant and products via the transition state **TSx**. IRC:B3LYP/def2-TZVPP.

Fig. S2 SA2-CASSCF(8e, 7o)/ANO-RCC potential energy curves of the two low-lying singlet states of isopropyl nitrene leading to isomerization into imine. A section: energy profile obtained from the geometries of the IRC [dissociative direction] represented in Fig. S1(b) after removing the N₂ fragment. B section: linear interpolation starting at the 1¹A' minimum of isopropyl nitrene and ending at the first point of A section.

Fig S3 Atom numbering for Tables S4 to S10.