Supplementary Information

Rational design of highly efficient MXene-based catalysts for

water-gas-shift reaction

Zhe Zhang^{ab}, Baobing Zheng^c, Hao Tian^{bd}, Yanling He^{bd}, Xiang Huang^b, Sajjad Ali^b, and Hu Hu^{bef*}

Computational methods

To further confirm the effectiveness of water-assisted associative pathways for WGS reaction, a comprehensive microkinetic model is constructed on $Au/M_{n+1}X_nO_2$. The micro-kinetic simulation of WGS reaction contains several basic reactions. All calculations are based on DFT thermodynamic and kinetic data. The turnover frequencies (TOF) and coverages simulated are the WGS reaction reach in a steady state. The surface coverages are constrained to sum to unity for each system. The corresponding elementary steps and reaction rates are as follows:

$$\mathcal{CO}(g) + * \rightleftharpoons \mathcal{CO}^* \tag{1}$$

$$C0^* + H_2 0 \rightleftharpoons C00H^* + H^* \tag{2}$$

$$COOH^* \rightleftharpoons CO_2(g) + H^* \tag{3}$$

$$H^* + H^* \rightleftharpoons H_2(g) + 2^* \tag{4}$$

$$r_{1} = k_{1}^{+} P(CO) \theta_{*} - k_{1}^{-} \theta_{CO^{*}}$$
(5)

$$r_{2} = k_{2}^{+} P(H_{2}O) \theta_{CO^{*}} - k_{2}^{-} \theta_{COOH^{*}} \theta_{H^{*}}$$
(6)

$$r_{3} = k_{3}^{+} \theta_{COOH^{*}} - k_{3}^{-} P(CO_{2}) \theta_{H^{*}}$$
(7)

$$r_4 = k_4^+ \theta_{H^*}^2 - k_4^- P(H_2) \theta_*^2$$
(8)

$$\frac{d}{d}\theta_{CO^*} = r_1 - r_2 \tag{9}$$

$$\frac{d}{d}\theta_{COOH^*} = r_2 - r_3 \tag{10}$$

$$\frac{d}{d}\theta_{H^*} = r_2 + r_3 - 2r_4 \tag{11}$$

$$\frac{d}{d}\theta_* = 2r_4 - r_1 \tag{12}$$

$$\sum_{i} \theta_{i}^{*} = 1 \tag{13}$$

Where θ_i^* is coverage of the species. The k_1^+ is the rate constant, k_1^- is the rate constant of the reverse reaction. Based on the transition state theory, the equilibrium constant (K_i) and k_i of the chemical step i are given by:

$$K_i = exp^{[i0]}(-\frac{\Delta G_i}{k_B T})$$
(14)

$$k_i = v_i exp^{[i0]}(-\frac{E_{a,i}}{k_B T})$$
(15)

where ΔG_i , v_i , and $E_{a,i}$ are the free energy change, pre-exponential factor, and activation energy of step i, respectively. Furthermore, k_B and T are the Boltzmann constant and temperature (298.15 K), respectively. For the reverse reactions, k_{-i} can be calculated through the equation:

$$k_{-i} = \frac{k_i}{K_i} \tag{16}$$

These equations have been numerically solved in the steady state. We have used them to further caltate the TOF. Under standard conditions, the free energy of the adsorbed hydrogen (ΔG_{H^*}) can be written as

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S \tag{17}$$

 ΔE_{ZPE} and $T\Delta S$ are the differences of zero-point energy and entropy between the adsorbed hydrogen and hydrogen in the gas phase, respectively. The asterisk denotes the adsorption sites. ΔE_{H^*} is the hydrogen chemisorption energy and is defined as

$$\Delta E_{H^*} = E_{nH^*} - E_{(n-1)H^*} - \frac{1}{2}E_{H_2(g)}$$
(18)

where E_{nH^*} and $E_{(n-1)H^*}$ represent the total energies of the catalyst with n and n-1 adsorbed hydrogen atoms, respectively. ${}^{E_{H_2(g)}}$ represents the total energy of H₂ in the gas phase. When ΔG_{H^*} is less than 0, the proton transfer process is exothermic. The free energy for all reaction intermediates is calculated as:

$$\Delta G^{i} = E_{DFT}^{\ i} + E_{ZPE}^{\ i} - TS^{i} \tag{19}$$

 E_{DFT}^{i} is the ground state potential energy obtained from DFT, E_{ZPE}^{i} is the zero-point energy, and TSⁱ is the entropy of the intermediate. Table S13 provides the free energies, zero-point energy, and entropy corrections used for the WGS intermediates. The adsorption energy (E_{ad}) is defined as

$$\tilde{E}_{ad} = E_{system} - (E_{adsorbent} + E_{adsorbate})$$
(20)

where E_{system} , $E_{adsorbent}$, and $E_{adsorbate}$ are the total energies of the slab structure with the adsorbent, the adsorbent, and the slab structure, respectively.

Fig. S1. Potential energy diagram for CO reforming via two H-bonded water molecules on Au_4/Ti_2CO_2 , Au_{10}/Ti_2CO_2 , and Au_{15}/Ti_2CO_2 . The activation barriers for *CO \rightarrow *COOH reforming are the rate-determining steps.

Fig. S2. The calculated free energies of H for surface O-termination MXene $(M_{n+1}X_nO_2)$ and MXene-supported Au clusters $(Au/M_{n+1}X_nO_2)$.

Fig. S3. Side views of three typical functionalized structures for $M_3X_2T_2$ and $M_4X_3T_2$ in a 2 × 2 supercell. All the functional groups are located (a, b, g, h) on the top sites of the first layer of transition metals, (c, d, i, j) on the top of hexagonal close-packed (hcp) sites among the neighboring C/N atoms, and (e, f, k, l) above the face-centered-cubic (fcc) sites of the second layer of transition metal atoms. Purple, blue, red, and white spheres denote transitional metals, C/N atoms, functionalized O/F atoms, and H atoms, respectively.

Fig. S4. Potential energy diagram for CO reforming via two H-bonded water molecules on Au/M_2XO_2 and $Au/M_3X_2O_2$. The activation barriers for *CO \rightarrow *COOH reforming are the rate determining steps.

Fig. S5. Potential energy profiles for CO reforming via two H-bonded water molecules on Au/M_2XO_2 , $Au/M_3X_2O_2$ and $Au/M_4X_3O_2$. The first peak in all figures is *CO \rightarrow *COOH reforming barrier, which is also the rate determining barrier. The second peak is the barrier for depositing the second *H, which is smaller than the former.

Fig. S6. Potential energy profile for CO binding O atom from the support and forming CO₂.

Table S1. The calculated lattice constants and the total energies per unit cell for all the models of MXene are summarized. The lattices and energies of the most stable models are highlighted by overstriking.

MV	То	p site	Нс	p site	Fcc	site
MXene	lattice	Energy(eV)	lattice	Energy(eV)	lattice	Energy(eV)
Nb ₂ CO ₂	3.12	-44.18	3.05	-47.37	3.13	-47.94
$Nb_2C(OH)_2$	3.19	-52.70	3.05	-53.81	3.21	-53.86
Nb_2CF_2	3.20	-40.58	3.01	-41.60	3.20	-41.81
$Nb_3C_2O_2$	3.30	-65.23	3.08	-67.79	3.15	-68.33
$Nb_3C_2(OH)_2$	3.19	-73.42	3.09	-74.64	3.12	-73.93
$Nb_3C_2F_2$	3.21	-61.35	3.07	-62.39	3.11	-61.81
$Nb_4C_3O_2$	3.13	-88.70	3.12	-88.52	3.15	-88.97
$Nb_4C_3(OH)_2$	3.17	-94.08	3.12	-95.11	3.16	-94.80
$Nb_4C_3F_2$	3.17	-82.00	3.10	-82.84	3.16	-82.75
V_2CO_2	3.05	-42.22	2.83	-43.78	2.90	-44.41
$V_2C(OH)_2$	3.18	-50.36	2.85	-50.96	3.00	-51.21
V_2CF_2	3.19	-38.29	2.80	-38.82	2.98	-39.16
$V_3C_2O_2$	3.10	-61.48	2.87	-62.76	2.92	-63.40
$V_3C_2(OH)_2$	3.03	-69.56	2.89	-70.24	3.00	-69.91
$V_3C_2F_2$	3.04	-57.44	2.86	-58.07	2.96	-57.92
$V_4C_3O_2$	3.06	-80.28	2.90	-81.95	2.92	-82.53
$V_4C_3(OH)_2$	2.99	-88.62	2.90	-89.32	2.95	-89.19
$V_4C_3F_2$	2.99	-76.48	2.88	-77.11	2.94	-77.19
Ti_2NO_2	3.00	-45.98	2.90	-44.71	3.01	-45.98
$Ti_2N(OH)_2$	3.00	-49.55	2.95	-51.71	3.05	-51.99
Ti_2NF_2	3.08	-38.10	2.91	-39.65	3.06	-40.07
$Ti_3N_2O_2$	3.01	-65.69	2.96	-64.44	3.01	-65.69
$Ti_3N_2(OH)_2$	3.02	-71.36	2.97	-71.50	3.02	-71.36

$Ti_3N_2F_2$	3.13	-57.89	2.94	-59.48	3.03	-59.38
$Ti_4N_3O_2$	2.99	-79.13	2.97	-84.14	3.00	-85.31
$Ti_4N_3(OH)_2$	3.02	-91.15	2.98	-91.14	3.02	-91.15
$Ti_4N_3F_2$	2.99	-79.13	2.96	-79.05	3.02	-79.22
Ti_2CO_2	3.10	-44.95	2.96	-43.20	3.03	-45.04
$Ti_2C(OH)_2$	3.05	-51.38	3.02	-51.06	3.07	-51.39
Ti_2CF_2	3.21	-37.87	2.98	-38.98	3.06	-39.52
$Ti_3C_2O_2$	3.04	-63.67	3.03	-62.16	3.04	-63.67
$Ti_3C_2(OH)_2$	3.08	-70.20	3.04	-69.70	3.09	-70.20
$Ti_3C_2F_2$	3.16	-56.79	3.02	-57.63	3.08	-58.37
$Ti_4C_3O_2$	3.04	-82.40	3.03	-80.86	3.04	-82.40
$Ti_4C_3(OH)_2$	3.09	-88.84	3.05	-88.36	3.09	-88.84
$Ti_4C_3F_2$	3.15	-75.52	3.03	-76.27	3.08	-77.01

Table S2. The calculated lattice constants and the total energies per unit cell for bare MXene are summarized.

MXene	lattice	Energy(eV)	MXene	lattice	Energy(eV)
Nb ₂ C	3.12	-28.71	V_2C	2.89	-26.31
Ti_2N	2.97	-25.75	Ti_2C	3.07	-25.03
Nb_3C_2	3.15	-49.34	V_3C_2	2.95	-45.67
Ti_3N_2	2.99	-45.35	Ti_3C_2	3.09	-43.97
Nb_4C_3	3.13	-70.21	V_4C_3	2.92	-64.85
Ti_4N_3	2.99	-65.19	Ti_4C_3	3.10	-62.68

Table S3. The binding energies of functional groups T = O, OH, and F at the most stable sites on MXene surfaces.

MXene	$E_O(eV)$	O site	E _{OH} (eV)	OH site	$E_F(eV)$	F site
Nb_2CT_2	-2.17	fcc	-1.74	fcc	-2.06	fcc
$Nb_3C_2T_2$	-2.05	fcc	-1.82	hcp	-2.03	hcp
$Nb_4C_3T_2$	-1.93	fcc	-1.62	hcp	-1.82	hcp
Ti_2NT_2	-2.67	fcc	-2.29	fcc	-2.66	fcc
$Ti_3N_2T_2$	-2.72	fcc	-2.24	hcp	-2.57	hcp
$Ti_4N_3T_2$	-2.61	fcc	-2.15	fcc	-2.52	fcc
V_2CT_2	-1.62	fcc	-1.60	fcc	-1.93	fcc
$V_3C_2T_2$	-1.42	fcc	-1.29	fcc	-1.71	hcp
$V_4C_3T_2$	-1.40	fcc	-1.39	hcp	-1.68	fcc
Ti_2CT_2	-2.56	fcc	-2.35	fcc	-2.75	fcc
$Ti_3C_2T_2$	-2.40	fcc	-2.28	fcc	-2.71	fcc
$Ti_4C_3T_2$	-2.41	fcc	-2.25	fcc	-2.67	fcc

Table S4. Calculated activation barriers and reaction energies of WGS reaction for different sizes and shape of Au clusters on Ti_2CO_2 .

	* <i>C0</i> →	*СООН	$*COOH \rightarrow *CO_2$		
MXene	$E_{a_1}(eV)$	$\Delta E_1(eV)$	$E_{a_2}(eV)$	$\Delta E_2(eV)$	
Au_4/Ti_2CO_2	0.33	-0.20	0.15	-0.25	
Au_{10}/Ti_2CO_2	0.23	-0.16	0.16	-0.09	
Au_{15}/Ti_2CO_2	0.27	-0.55	0.19	-0.14	
	* <i>CO</i> -				
	$E_{a_1}(eV)$	$\Delta E_1(eV)$			
Au_{10}/Ti_2CO_2	1.76	1.67			

Table S5. The CO adsorption energies at different sites of Au_4 , Au_{10} , and Au_{15} clusters on Ti_2CO_2 .

Тор	Side	E _{co}	Тор	Side	E _{CO}	Тор	Side	E _{co}
view	view	(eV)	view	view	(eV)	view	view	(eV)
		-0.51			-0.71			-0.65
		-0.42			-0.50			-0.59
		-0.03			-0.40			-0.29
		-0.01			-0.01			-0.01

Table S6. The geometric structures of Au_{10} clusters and the adsorption energies of per Au atom for Au_{10} cluster on Ti_2CO_2 .

Geometric structures	Top view	Side view	Adsorption Energy (eV)
Au ₁₀ cluster-1			-0.80
Au ₁₀ cluster-2			-0.78
Au ₁₀ cluster-3			-0.76
Au ₁₀ cluster-4			-0.68
Au ₁₀ cluster-5			-0.61
Au ₁₀ cluster-6			-0.58

Anchoring configuration	Top view	Side view	Substrate Top view	Substrate Side view	Adsorption Energy (eV)
Bare substrate					-1.24
Au/MXene					-0.80
Full O covered					0.49
Full F covered					0.51

Table S7. The adsorption energies per Au atom for Au_{10} cluster anchoring on different functionalized MXene.

Table S8. The free energies per O atom adsorb on the different sites of Ti_2CO_2 and Au cluster, respectively.

O atom o	O atom on Ti ₂ CO ₂		O atom on	$C_{\rm c}$ (aV)	
Top view	Substrate	$G_0(ev)$	Top view	Side view	$G_0(ev)$
		-1.94			2.03
		-1.92			2.14
		-1.99			2.93

Table S9. The free energies per H atom adsorb on the different sites of isolated Au cluster and Au/Ti_2CO_2 , respectively.

H atom on isolated Au cluster		$G_{\rm c}$ (aV)	H atom on	$\mathbf{C}_{\mathbf{a}}(\mathbf{a}\mathbf{V})$	
Top view	Side view	$O_{\rm H}(ev)$	Top view	Side view	$O_{\rm H}(ev)$
*		0.45			0.77
*		0.68			0.61
*		0.46			0.35
*		0.54			0.22

Table S10. The total energies of COOH and HCOO intermediates on different sites of Au/Ti₂CO₂.

Top view Side view Energy (eV) Top view Side view Energy (eV	p view Side view Energy (eV) Top view Side view Energy (eV)
--	---

	-712.80		-711.51
	-712.06		-712.37
	-712.06		-712.44
	-711.95		-712.50
	-711.28		-712.37

Table S11. The adsorption energies of CO and H₂O molecules on different sites of Au/Ti₂CO₂.

CO top view	CO side view	E _{co} (eV)	H ₂ O top view	H ₂ O side view	$E_{H2O}\left(eV\right)$
		-0.71			-0.03
		-0.58			-0.11
		-0.52			-0.13
		-0.50			-0.16
		-0.49			-0.26

 $Table \ S12. \ Calculated \ activation \ barriers \ and \ reaction \ energies \ of \ WGS \ reaction \ for \ water-assisted \ associative \ pathways \ on \ a \ mixture \ terminated \ Au/M_{n+1}X_nT_2.$

	$*CO \rightarrow$	*COOH	$*COOH \rightarrow *CO_2$		
MXene	$E_{a_1}(eV)$	$\Delta E_1(eV)$	$E_{a_2}(eV)$	$\Delta E_2(eV)$	
Au/V_2CO_2	0.28	-0.19	0.06	-0.36	
O + F (site 1)	0.30	-0.13	0.07	-0.31	
O + F (site 6)	0.28	-0.20	0.04	-0.36	
O + F (site 5, 6)	0.27	-0.21	0.05	-0.35	
O + F (site 1, 4)	0.30	-0.10	0.07	-0.27	
O + F (site 2, 3)	0.30	-0.09	0.08	-0.26	
Au/Ti_2CO_2	0.23	-0.16	0.16	-0.09	
O + F (site 1)	0.29	-0.11	0.16	-0.09	
O + F (site 6)	0.27	-0.16	0.16	-0.16	
O + F (site 5, 6)	0.28	-0.13	0.15	-0.11	
O + F (site 1, 4)	0.32	-0.06	0.16	-0.09	

O + F (site 2, 3)	0.26	-0.12	0.15	-0.11
$Au/Ti_4C_3O_2$	0.15	-0.28	0.15	-0.12
O + F (site 1)	0.22	-0.21	0.15	-0.12
O + F (site 6)	0.18	-0.28	0.14	-0.15
O + F (site 5, 6)	0.21	-0.25	0.15	-0.15
O + F (site 1, 4)	0.25	-0.16	0.16	-0.10
O + F (site 2, 3)	0.21	-0.20	0.15	-0.12

Table S13. The free energies, ZPE corrections, and entropy corrections used for the WGS intermediates.

Species	Free energy (eV)	ZPE (eV)	Entropy (eV)
CO*	-15.445	0.175	0.133
COOH*	-27.035	0.617	0.245
H_2O^*	-13.873	0.621	0.167
CO ₂ *	-22.880	0.312	0.192

Table S14.	The free	energies	of H	atoms	on Au/	Ti_2CO_2
------------	----------	----------	------	-------	--------	------------

Top view	Side view	ZPE (eV)	Entropy (eV)	Free energy of all H atoms (eV)	Free energy per H atom (eV)
		0.295	0.013	0.348	0.348
		0.587	0.027	0.752	0.376
		0.874	0.043	1.220	0.407
		1.158	0.059	1.696	0.424
		1.444	0.076	2.244	0.449
		1.737	0.092	2.737	0.456
		2.019	0.112	3.390	0.484
		2.299	0.132	4.046	0.506
		2.571	0.155	4.774	0.530