Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information

The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of

differential stabilization and charge delocalization

Taiji Nakamura, Dmitri G. Fedorov^{*}

Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.

* Corresponding author:

Definition of harmonic vibrational terms.

$$E_{\rm ZPE} = \sum_{a=1}^{K} R \frac{v_a}{2} \tag{1}$$

$$H^{T} = \sum_{a=1}^{K} R \frac{\tilde{v}_{a}}{\exp(\tilde{v}_{a}/T) - 1}$$
⁽²⁾

$$S = \sum_{a=1}^{K} R \left[\frac{\widetilde{v}_a / T}{\exp(\widetilde{v}_a / T) - 1} - \ln(1 - \exp(-\widetilde{v}_a / T)) \right]$$
(3)

$$G = E_{\text{ZPE}} + H^T - TS = H - TS \tag{4}$$

where *a* numbers vibrational modes with frequencies v_a , $\tilde{v}_a = hv_a/k$, *h* is the Plank's constant, *k* is the Boltzmann's constant, *R* is the gas constant and *T* is the temperature. *K* is the number of normal modes.

The absolute values of thermodynamic quantities are subtracted to compute binding contributions such as ΔG (subtracting the values for the complex and isolated systems).

Table S1. Adsorption energy (kcal/mol) for the most stable and second isomer ZSM-5 at the full DFTB/PBC level.

Adsorbed molecule	Most stable isomer	Second isomer
Water	-10.1	-10.8
Methanol	-17.9	-16.0
Ethanol	-25.9	-22.2
Propanol	-32.1	-26.4

Stationary point	ΔE	$\Delta H_{ m ZPE}$	ΔH	ΔG
Reactants	0.0	0.0	0.0	0.0
I1	-35.3	-35.2	-30.1	-41.6
TS1	-13.9	-14.1	-10.1	-17.3
I2	-47.4	-42.5	-41.1	-40.9
TS2	-42.1	-44.6	-42.0	-44.9
I3	-55.1	-50.9	-49.4	-49.5
TS3	-38.2	-37.8	-34.7	-39.8
I4	-50.0	-48.4	-45.1	-50.6
TS4	-40.2	-40.6	-37.0	-42.6
15	-66.9	-62.8	-60.2	-63.0
TS5	-59.1	-58.9	-55.5	-60.5
I6	-80.5	-78.7	-74.7	-82.3
TS6	-77.0	-77.7	-73.7	-80.7
I7	-89.8	-84.8	-82.2	-86.1
TS7	-87.6	-88.3	-84.2	-92.4
I8	-105.7	-102.2	-97.8	-106.3
Products	-68.5	-69.1	-68.4	-74.7

Table S2. The energies of transition states (TS) and intermediates (I) plotted in Fig. 7.

If the reaction is analyzed based on ΔH_{ZPE} , ΔH , or ΔG , the barriers for TS2 and TS7 disappear.

Figure S1. Position of all 12 distinct T sites (T1-T12) in ZSM-5 structure and relative stability of 48 isomers of H-ZSM-5 (every T site has 4 adjacent oxygens that can be protonated).

Figure S2. Correlation between the experimental¹ and calculated adsorption energy at the full DFTB/PBC level for the most stable and second isomers of H-ZSM-5 (isomers refer to Al sites).

Figure S3. Reaction profile of the non-catalytic *p*-xylene production from 2,5-dimethylfuran (DMF) and ethylene at the DFTB level. Note that no zeolite is used in these reactions.

References

¹ C.-C. Lee, R. J. Gorte and W. E. Farneth, J. Phys. Chem. B 1997, **101**, 3811–3817.