Electronic Supplementary Information

for

Structural, magnetic, and electronic properties of EuSi2 thin films on

Si(111) surface

Guang Yang,^{1,2} Jun-Shuai Chai,^{1,3} Kun Bu,^{1,2} Li-Fang Xu,^{1,4} and Jian-Tao

Wang^{1,2,4*}

¹Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ³Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China ⁴Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China

^{*}E-mail address: wjt@aphy.iphy.ac.cn (Jian-Tao Wang).

(1) Structural stability for the unpassivated EuSi₂ thin films on Si(111) surface

We first study the structural stability of 1-3 ML unpassivated EuSi₂ thin films on Si(111) surface (see Fig. S1). For 2 ML EuSi₂ thin film, the structures in AA and AB stacking [see Fig. S1(b,c)] are simulated with interlayer FM and AFM couplings between the Eu atomic layers. As for 3 ML EuSi₂ thin film, AAA and ABC stacking are considered [see Fig. S1(d,e)]. The calculated relative total energy and local magnetic moment on Eu sites for 1-3 ML unpassivated EuSi₂ thin films on Si(111) surface are listed in Table S1. Based on the above results, we can see that AA-stacking is the most stable model for multilayer unpassivated EuSi₂ thin film on Si(111) surface. The calculated local magnetic moment on Eu site in each layer is 6.96-7.00 μ_B , and the ground state for the multilayer unpassivated EuSi₂ thin film on Si(111) surface should be in AA stacking with an AFM interlayer coupling. These structural and magnetic behaviors are in agreement with the cases with the H passivated EuSi₂ thin films shown in Fig. 1 in main text.

(2) Electronic properties for the unpassivated EuSi₂ thin films on Si(111) surface

We next discuss the electronic properties of 1-3 ML unpassivated EuSi₂ thin films on Si(111) surface. The calculated electronic band structure for 1-3 ML unpassivated EuSi₂ thin films on Si(111) surface are plotted in Fig. S2(a-c). Shaded areas represent the projected Si(111) bulk bands. We find the surface states S_{up} and S_{dn} crossing the Fermi level (F_E) show metallic feature. In order to show the distribution of 1-3 ML unpassivated EuSi₂/Si(111) surface states S_{up} and S_{dn} in real space, the band-decomposed charge density distributions (BDCDDs) are calculated and plotted in Fig. S2(d-f). The surface states S_{up} and S_{dn} for 1-3 ML unpassivated EuSi₂ thin films are mainly contributed by the topmost Si atoms of EuSi₂ thin films. Their corresponding total and projected density of states (DOS) [see Fig. S2(g-i)] show that the surface states are mainly originated from the Si-*p* orbits. On the basis of these results, we concluded that the topmost Si atoms for EuSi₂ thin films are unstable and active. Thus, passivating topmost Si atoms by H atoms is essential for further investigating the electronic properties.

Model	$E_{tot} ({\rm meV})$	$M_{Eu-I}(\mu_B)$	$M_{Eu-II}(\mu_B)$	$M_{Eu-III} \left(\mu_B \right)$
1 ML		6.99		
$2 \text{ ML-AA}(\uparrow\downarrow)$	0	6.98	-6.99	
$2 \text{ ML-AA}(\uparrow\uparrow)$	4	6.97	6.97	
$2 \text{ ML-AB}(\downarrow\uparrow)$	5	-6.98	7.00	
$2 \text{ ML-AB}(\uparrow\uparrow)$	8	6.96	6.97	
$3 \text{ ML-AAA}(\uparrow\downarrow\uparrow)$	0	6.99	-7.00	6.99
$3 \text{ ML-AAA}(\uparrow\uparrow\uparrow)$	5	6.97	6.96	6.98
$3 \text{ ML-ABC}(\downarrow \uparrow \downarrow)$	170	-6.98	7.00	-7.00
$3 \text{ ML-ABC}(\uparrow\uparrow\uparrow)$	181	6.99	7.00	7.00

Table S1: The calculated relative total energy and local magnetic moment on Eu sites with FM and AFM interlayer coupling for 1ML, 2 ML in AA and AB stacking, and 3 ML in AAA and ABC stacking unpassivated EuSi₂ thin films on Si(111) surface.

Fig. S1: The side view of unpassivated $EuSi_2$ thin films on Si(111) surface. (a) 1 ML, (b) 2 ML in AA stacking, (c) 2 ML in AB stacking, (d) 3 ML in AAA stacking, and (e) 3 ML in ABC stacking. Dashed lines represent a 1×1 hexagonal unit cell. The purple, blue, and white balls represent Eu, Si, and H atoms, respectively. The first, second and third Eu atomic layer are marked as Eu-I, Eu-II, and Eu-III, respectively.

Fig. S2: The electronic band structure for (a) 1 ML, (b) 2 ML and (c) 3 ML unpassivated EuSi₂ thin films on Si(111) surface. Shaded areas represent the projected Si(111) bulk bands. The spin-up and spin-down states are represented by red and black lines, respectively. The BDCDDs of S_{up} and S_{dn} for (d) 1 ML, (e) 2 ML and (f) 3 ML unpassivated EuSi₂ thin films on Si(111) surface. The iso-surface charge density contour is 0.001 e/Bohr³. The total and projected DOS for (g) 1 ML, (h) 2 ML and (i) 3 ML unpassivated EuSi₂ thin films on Si(111) surface. The spin-up and spin-down states are represented by positive and negative values, respectively. The E_F is set to zero and indicated by the black dashed line.