	Technique	Sample Requirements	Key References	Advantages	Disadvantages
De novo interaction ID and validation	Y2H	Cell based – requires a set of plasmids encoding all proteins to be screened	(Mehla, Caufield, and Uetz 2015)	 Identifies direct interactions proteome-wide 	 Requires significant cloning to set up
	AP-MS	Coomassie staining: 20–50 ng, Sypro Ruby: 1–5 ng, Western blotting: 0.1 ng (per protein band)	(Keilhauer, Hein, and Mann 2015)	 * Simple MS setup available in most facilities 	 * Bridging by, for example, DNA can be an issue * Not quantitative * Not good to ID weak, transient interactions
	Bio-ID/APEX		(Roux et al. 2018)	 * Can detect weak, transient interactions 	 * High background * APEX requires H₂O₂, restricting its use in some cell types and <i>in</i> <i>vivo</i> contexts
	Pulldowns	1–10 mg total input protein (0.01–1 μg total protein after affinity enrichment)	(Louche, Salcedo, and Bigot 2017)	 * Simple set-up * No specialist equipment required 	 * Difficult to validate weak, transient interactions * Requires access to good antibodies or tagged protein
Stoichiometry	SEC	20–100 μg purified protein at 5–20 μΜ	(Sahin and Roberts 2012; Gell, Grant, and Mackay 2012)	* Simple set-up	* Elution volume dependent on molecular shape
	SEC-MALLS	Size dependent: 10–50 μg for species > 40 kDa	(Folta- Stogniew 2006)	* Allows molecular weight determination	 Complexes with intermediate or low affinity will partially dissociate at typical concentrations, introducing ambiguity
	DLS	Size dependent: 10–50 μg for species > 40 kDa	(Stetefeld, McKenna, and Patel 2016)	* Quick method to assess sample homogeneity	 Molecular weight estimation inaccurate as relies on Stokes radius which is shape dependent

	SAXS	50–100 μL at ~5 mg/mL	(Hura et al. 2009)	* Gives information on molecular shape	 * High concentrations required can lead to aggregation
	Mass photometry	<1 ng protein	(Soltermann et al. 2020; Young et al. 2018)	 * Single molecule detection * Can determine binding constants and molecular weights * Low sample requirements 	 Lower mass precision than MS techniques
	Native MS	10–100 μL of 1–10 μM protein	(Snijder and Heck 2014; Donnelly et al. 2019)	* Very high mass precision	 Complex must be stable in MS- compatible buffers, such as ammonium bicarbonate Specialist MS setup required
	Analytical ultracentrifugation	200–400 μL @ A280 = 1.0 (absorbance optics), 0.1 mg/mL (interference optics), 100 pM (fluorescence optics)	(Cole et al. 2008)	* Can use complex mixtures e.g. lipids	 Challenging for heterotypic interactions Not useful for complexes with small ligands
Binding affinities	ITC	2–300 uL @ 10 μM P and 2 x ~60 μL @ 100 μM L for one titration and an L into buffer control	(Freyer and Lewis 2008)	 * Widely applicable * Can determine thermodynamic parameters 	 * Enthalpy change is limiting factor for signal to noise * Sample components that cause a heat change interfere with the experiment * Very sensitive to buffer mismatch * High protein requirement
	SPR	1–10 μg ligand and 30 μL analyte at each concentration (optimising ligand immobilisation level is critical)	(Nikolovska- Coleska 2015)	 * Gives kinetic, as well as equilibrium, data * Low protein requirements 	 * Disposable biosensors expensive * Non-specific sensor binding can interfere * Very sensitive to buffer mismatch * Can be difficult to measure binding of small molecules to large immobilized species

	BLI	Ligand loading 50–100 nM, 200 μL analyte per well (for 96 well plate) (optimising ligand immobilisation level is critical)	(Abdiche et al. 2008)	 * Gives kinetic, as well as equilibrium, data * Sensitive to binding of small ligands (down to 150 Da) 	 * Disposable biosensors tips relatively expensive * Non-specific sensor binding can interfere
	Intrinsic tryptophan fluorescence	low μM quantities of protein, [ligand] 10-fold either side of K _D (volume depends on assay setup, <i>i.e.,</i> cuvette vs plate)	(Lakowicz 2006)	 * Cheap and straightforward to perform * Binding affinities are relative 	 Requires appropriately positioned tryptophan Analysis can be complicated if multiple tryptophan residues are present Fluorescent binding partners can interfere
	MST	80 μL fluorescently labelled protein/ligand @ 10–50 nM	(Jerabek- Willemsen et al. 2011)	 * Wide range of compatible binding partners * No significant size limits 	* Protein binding to capillary walls can interfere (different capillary coatings can ameliorate this)
	FA/FP	1–100 nM labelled ligand, binding partner 10–100-fold either side of K _D (volume depends on assay setup, <i>i.e.</i> , cuvette vs plate)	(Rossi and Taylor 2011)	* Cheap and easy to perform* Relatively easy to adapt to HTS	 * Fluorescent ligands can interfere * Requires large size change on complex formation
	FRET/BRET	Partners must be at similar concentrations so that background fluorescence doesn't dominate the signal	(Kobayashi et al. 2019; Algar et al. 2019)	 * Can be performed in cells or <i>in</i> vitro * Can measure exact distances 	 Requires dual labelling (fluorescent pairs must be carefully chosen)
	AlphaScreen/LISA	Small quantities of suitably tagged P and L for binding to acceptor and donor beads	(Yasgar et al. 2016)	 Compatible with a wide range of complex media Easily adapted to high- throughput screening 	 * Requires specialist fluorescence plate reader * Signal is temperature sensitive * Beads are light sensitive
	DSF	10 μg protein per replicate, 10–20 molar excess ligand	(Gao, Oerlemans, and Groves 2020)	 * Binding affinities are usually relative unless performed in an isothermal setup * Easy to screen large ligand sets * Low sample requirements 	 * Fluorescent ligands can interfere * Difficult to interpret for multidomain proteins

Structural information	XL-MS	10–100 μg protein of interest	(Steigenberger et al. 2020; Klykov et al. 2018)	 * Can be applied to wide range of samples * Relatively limited technical requirements 	 * Effect of protein flexibility on XL- MS data not well understood
	HDX-MS	nanomole quantities @ <1 μ M	(Hodge, Benhaim, and Lee 2020)	 * Can be used for large, multi- component complexes * Low sample requirement compared to many biophysical methods 	 * Peptide rather than residue level resolution * Requires relatively sophisticated setup and expert analysis

Abdiche, Yasmina, Dan Malashock, Alanna Pinkerton, and Jaume Pons. 2008. "Determining Kinetics and Affinities of Protein Interactions Using a Parallel Real-Time Label-Free Biosensor, the Octet." *Analytical Biochemistry* 377 (2): 209–17. https://doi.org/10.1016/j.ab.2008.03.035.

- Algar, W. Russ, Niko Hildebrandt, Steven S. Vogel, and Igor L. Medintz. 2019. "FRET as a Biomolecular Research Tool Understanding Its Potential While Avoiding Pitfalls." *Nature Methods* 16 (9): 815–29. https://doi.org/10.1038/s41592-019-0530-8.
- Cole, James L, Jeffrey W Lary, Thomas P Moody, and Thomas M Laue. 2008. "Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium." *Methods in Cell Biology* 84: 143–79. https://doi.org/10.1016/S0091-679X(07)84006-4.
- Donnelly, Daniel P, Catherine M Rawlins, Caroline J DeHart, Luca Fornelli, Luis F Schachner, Ziqing Lin, Jennifer L Lippens, et al. 2019. "Best Practices and Benchmarks for Intact Protein Analysis for Top-down Mass Spectrometry." *Nature Methods* 16 (7): 587–94. https://doi.org/10.1038/s41592-019-0457-0.
- Folta-Stogniew, Ewa. 2006. "Oligomeric States of Proteins Determined by Size-Exclusion Chromatography Coupled With Light Scattering, Absorbance, and Refractive Index Detectors BT - New and Emerging Proteomic Techniques." In , edited by Dobrin Nedelkov and Randall W Nelson, 97–112. Totowa, NJ: Humana Press. https://doi.org/10.1385/1-59745-026-X:97.
- Freyer, Matthew W, and Edwin A B T Methods in Cell Biology Lewis. 2008. "Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions." In *Biophysical Tools for Biologists, Volume One: In Vitro Techniques*, 84:79–113. Academic Press. https://doi.org/https://doi.org/10.1016/S0091-679X(07)84004-0.
- Gao, Kai, Rick Oerlemans, and Matthew R Groves. 2020. "Theory and Applications of Differential Scanning Fluorimetry in Early-Stage Drug Discovery." *Biophysical Reviews* 12 (1): 85–104. https://doi.org/10.1007/s12551-020-00619-2.
- Gell, David A, Richard P Grant, and Joel P Mackay. 2012. "The Detection and Quantitation of Protein Oligomerization." In *Protein Dimerization and Oligomerization in Biology*, edited by Jacqueline M Matthews, 19–41. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3229-6_2.
- Hodge, Edgar A, Mark A Benhaim, and Kelly K Lee. 2020. "Bridging Protein Structure, Dynamics, and Function Using Hydrogen/Deuterium-Exchange Mass Spectrometry." *Protein Science* 29 (4): 843–55. https://doi.org/10.1002/pro.3790.

Hura, Greg L, Angeli L Menon, Michal Hammel, Robert P Rambo, Farris L Poole II, Susan E Tsutakawa, Francis E Jenney Jr, et al. 2009. "Robust, High-Throughput Solution Structural Analyses by Small Angle X-Ray Scattering (SAXS)." *Nature Methods* 6 (8): 606–12. https://doi.org/10.1038/nmeth.1353.

Jerabek-Willemsen, Moran, Chistoph J Wienken, Dieter Braun, Philipp Baaske, and Stefan Duhr. 2011. "Molecular Interaction Studies Using Microscale Thermophoresis." Assay and Drug Development Technologies 9 (4): 342–53. https://doi.org/10.1089/adt.2011.0380.

Keilhauer, Eva C, Marco Y Hein, and Matthias Mann. 2015. "Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS)." *Molecular & Cellular Proteomics* 14 (1): 120–35. https://doi.org/10.1074/mcp.M114.041012.

Klykov, Oleg, Barbara Steigenberger, Sibel Pektaş, Domenico Fasci, Albert J R Heck, and Richard A Scheltema. 2018. "Efficient and Robust Proteome-Wide Approaches for Cross-Linking Mass Spectrometry." *Nature Protocols* 13 (12): 2964–90. https://doi.org/10.1038/s41596-018-0074-x.

Kobayashi, Hiroyuki, Louis-Philippe Picard, Anne-Marie Schönegge, and Michel Bouvier. 2019. "Bioluminescence Resonance Energy Transfer–Based Imaging of Protein–Protein Interactions in Living Cells." *Nature Protocols* 14 (4): 1084–1107. https://doi.org/10.1038/s41596-019-0129-7.

Lakowicz, Joseph R. 2006. "Protein Fluorescence." In Principles of Fluorescence Spectroscopy, 529–75. Springer, Boston, MA.

https://doi.org/https://doi.org/10.1007/978-0-387-46312-4_16.

Louche, Arthur, Suzana P Salcedo, and Sarah Bigot. 2017. "Protein-Protein Interactions: Pull-Down Assays." *Methods in Molecular Biology (Clifton, N.J.)* 1615: 247—255. https://doi.org/10.1007/978-1-4939-7033-9_20.

Mehla, Jitender, J. Harry Caufield, and Peter Uetz. 2015. "The Yeast Two-Hybrid System: A Tool for Mapping Protein-Protein Interactions." *Cold Spring Harbor Protocols* 2015 (5): 425–30. https://doi.org/10.1101/pdb.top083345.

Nikolovska-Coleska, Zaneta. 2015. "Studying Protein-Protein Interactions Using Surface Plasmon Resonance." In *Protein-Protein Interactions*, edited by Cheryl L Meyerkord and Haian Fu, 109–38. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2425-7_7.

Rossi, Ana M, and Colin W Taylor. 2011. "Analysis of Protein-Ligand Interactions by Fluorescence Polarization." *Nature Protocols* 6 (3): 365–87. https://doi.org/10.1038/nprot.2011.305.

Roux, Kyle J, Dae In Kim, Brian Burke, and Danielle G May. 2018. "BioID: A Screen for Protein-Protein Interactions." *Current Protocols in Protein Science* 91 (1): 19.23.1-19.23.15. https://doi.org/10.1002/cpps.51.

Sahin, Erinc, and Christopher J Roberts. 2012. "Size-Exclusion Chromatography with Multi-Angle Light Scattering for Elucidating Protein Aggregation Mechanisms." In *Therapeutic Proteins: Methods and Protocols*, edited by Vladimir Voynov and Justin A Caravella, 403–23. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-921-1_25.

Snijder, Joost, and Albert J R Heck. 2014. "Analytical Approaches for Size and Mass Analysis of Large Protein Assemblies." *Annual Review of Analytical Chemistry* 7 (1): 43–64. https://doi.org/10.1146/annurev-anchem-071213-020015.

- Soltermann, Fabian, Eric D.B. Foley, Veronica Pagnoni, Martin Galpin, Justin L.P. Benesch, Philipp Kukura, and Weston B. Struwe. 2020. "Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry." *Angewandte Chemie - International Edition* 59 (27): 10774–79. https://doi.org/10.1002/anie.202001578.
- Steigenberger, B, P Albanese, A J R Heck, and R A Scheltema. 2020. "To Cleave or Not To Cleave in XL-MS?" *Journal of the American Society for Mass Spectrometry* 31 (2): 196–206. https://doi.org/10.1021/jasms.9b00085.

Stetefeld, Jörg, Sean A McKenna, and Trushar R Patel. 2016. "Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences."

Biophysical Reviews 8 (4): 409–27. https://doi.org/10.1007/s12551-016-0218-6.

- Yasgar, Adam, Ajit Jadhav, Anton Simeonov, and Nathan P. Coussens. 2016. "AlphaScreen-Based Assays: Ultra-High-Throughput Screening for Small-Molecule Inhibitors of Challenging Enzymes and Protein-Protein Interactions Adam." *Methods Mol. Biol.* 1439: 77–98. https://doi.org/10.1007/978-1-4939-3673-1.
- Young, Gavin, Nikolas Hundt, Daniel Cole, Adam Fineberg, Joanna Andrecka, Andrew Tyler, Anna Olerinyova, et al. 2018. "Quantitative Mass Imaging of Single Molecules in Solution." *Science* 360: 423–27. https://doi.org/10.1101/229740.