The roles of metal species supported on Fe₃O₄ aerogel for photoassisted 4nitrophenol reduction and benzoic acid oxidation

Chechia Hu**^{ab}, Yi-Chan Hung^c, Pin-Yo Tseng^c, Zhen-Jie Yang^c, Yi-Feng Lin*^{bc}, Van-Huy

Nguyen^d

- ^a Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei City, 106 Taiwan
- ^b R&D center for Membrane Technology and Research Center for Circular Economy, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320 Taiwan
- ^c Department of Chemical Engineering, Chung Yuan Christian University, Chungli Dist., Taoyuan City, 320 Taiwan
- ^d Institute of Research and Development, Duy Tan University, Da Nang, 550000 Vietnam

* To whom correspondence should be addressed: E-mail: <u>chechia@mail.ntust.edu.tw</u>**; <u>yflin@cycu.edu.tw</u>* Tel: 886-2-27376638 Fax: 886-2-27376644

Figure S1 High-resolution (a) Fe 2p and (b) Cu 2p XPS profiles of 10Cu/FeO and 5Cu/FeO samples.

Figure S2 XRD patterns of FeO, 10Cu/FeO, and 10Ag/FeO samples.

Figure S3 Photoassisted reduction of 4-NP (2×10^{-4} M, 50 mL) to 4-AP under simulated solar irradiation in the presence of NaBH₄ (0.1 M, 10 mL) as the reducing agent using (a) 0.001 g of FeO, 5Cu/FeO, 10Cu/FeO, 15Cu/FeO, and CuFe₂O₄, and (b) 0.02 g of FeO, 5Ag/FeO, 10Ag/FeO, and 15Ag/FeO samples.

Figure S4 Photoassisted reduction of 4-NP to 4-AP under simulated solar irradiation using 10Cu/FeO under different experimental conditions: (a) reaction mixture contained 0.1 M of NaBH₄, 2×10^{-4} M of 4-NP, and different concentrations of 10Cu/FeO; (b) reaction mixture contained 0.1 M of NaBH₄, 0.001 g of 10Cu/FeO and different concentrations of 4-NP; (c) reaction mixture contained 2×10^{-4} M of 4-NP, 0.001 g of 10Cu/FeO and different concentrations of NaBH₄.

Figure S5 Photoassisted reduction of 4-NP to 4-AP conversion FeO, 10Ag/FeO, and 10Cu/FeO in the dark or under simulated solar irradiation in the absence of NaBH₄.

Figure S6 Photoassisted oxidation of BA over 10Ag/FeO under simulated solar light irradiation and different experimental conditions: (a) BA concentrations of 1×10^{-5} M, and 1×10^{-4} M (100 mL) and 1 mL of H₂O₂; (b) BA concentration of 1×10^{-5} M (100 mL) and different amounts of H₂O₂ (0, 0.4, 3, and 6 mL).

Figure S7 (a) Pseudo-first-order reaction kinetic plots of photoassisted oxidation of BA (1×10^{-5} M, 100 mL) using 0.03 g of 10Ag/FeO and H₂O₂ (3 mL) and NaN₃ (0.015 g), KI (0.04 g), or ethanol (10 mL) as scavengers. (b) Rate constants obtained from the pseudo-first-order reaction kinetic plot in (a).

Figure S8 TEM images of (a)–(c) 10Ag/FeO and (d)–(f) 10Cu/FeO. (a) and (d) before the reaction, (b) and (e) after the oxidation of BA, and (c) and (f) after the reduction of 4-NP.

Figure S9 High-resolution (a) Cu 2p and (b) Ag 3d XPS profiles of 10Cu/FeO and 10Ag/FeO samples after the photoassisted reaction.