Supplementary Material

Exploiting oxidative coupling of methane performed over $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts with disordered defective cubic fluorite structure

Davi D. Petrolini^a, Francielle F. C. Marcos^b, Alessandra F. Lucrédio^a, Valmor R. Mastelaro^c, José M. Assaf^d, and Elisabete M. Assaf^a*

^aUniversity of São Paulo, São Carlos Institute of Chemistry, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil.

^bUniversity of São Paulo, Escola Politécnica of the University of São Paulo, Av. Prof. Luciano Gualberto, t. 3, 380, São Paulo, SP, 05508-010, Brazil

^cUniversity of São Paulo, São Carlos Institute of Physics, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560-970, Brazil.

^dFederal University of São Carlos, Rod. W. Luiz, km 235, São Carlos, SP, 13565-905, Brazil.

$$X_{CH_4} = \frac{moles \ of \ methane \ reacted}{moles \ of \ methane \ in \ the \ feed} x \ 100 \ (Eq. \ 1)$$

$$S_{C_2} = \frac{2(moles of ethane and ethylene formed)}{moles of methane reacted} x 100 (Eq. 2)$$

$$Y_{C_2} = X_{CH_4} x S_{C_2} \div 100 \ (Eq. 3)$$

Figure 1S. a) Thermogravimetric and b) weight derivative curves of the as-synthesized $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts.

Figure 2S. Scanning electron microscopy images of the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts.

$$La_2Ce_2O_7$$

 $La_2(Ce_{0.6}Mg_{0.4})_2O_{7-\delta}$

 $La_2(Ce_{0.4}Mg_{0.6})_2O_{7-\delta}$

 $La_2Mg_2O_5$

Figure 4S. TPR profiles of the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts.

Figure 5S. CO_2 -TPD profiles of the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts.

Table 1S. Binding energies obtained by XPS for the surface elements of the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts. The integrated areas of the cerium peaks are shown in parentheses.

Catalyst	Binding energy	Binding energy (eV)	Binding	Binding	Binding	Binding
	(eV)	Ce ⁴⁺	energy	energy	energy	energy
	Ce ³⁺		(eV)	(eV)	(eV)	(eV)
			La ³⁺	O 1s	C 1s	Mg 2s

La ₂ Ce ₂ O ₇	881.6 (3594)	882.5 (9001)	832.9	528.8	284.6	
	885.6 (2732)	888.4 (6200)	835.1	531.4	285.9	
	896.7 (1040)	897.9 (7989)	837.9	532.9	288.0	
	900.7 (982)	900.5 (6366)	838.4		289.3	
		906.5 (4445)	849.5			
		916.1 (6629)	851.7			
			854.6			
			855.3			
La ₂ (Ce _{0.6} Mg _{0.4}) ₂ O _{7-δ}	881.2 (6428)	882.2 (4864)	833.7	528.9	284.7	88.9
	885.2 (4286)	888.2 (3242)	835.2	531.5	286.1	
	897.3 (590)	897.8 (6864)	837.7	533.1	288.2	
	901.3 (393)	900.7 (4184)	839.2		289.8	
		906.7 (2789)	850.3			
		916.1 (5349)	852.1			
			854.3			
			855.7			
$La_2(Ce_{0.4}Mg_{0.6})_2O_{7-\delta}$	881.6 (2385)	882.5 (5141)	833.6	529.0	284.7	88.7
	885.6 (1684)	888.5 (3921)	835.5	531.5	286.0	
	897.5 (893)	897.8 (5764)	838.3	532.9	288.3	
	901.5 (740)	903.7 (5274)	838.4		289.9	
		908.7 (3483)	850.1			
		916.1 (3715)	851.9			
			855.1			
			855.2			
$La_2Mg_2O_5$			835.4	531.6	284.8	88.9
			838.8	533.1	286.2	
			852.2		288.3	
			855.5		289.9	

Table 25. Analysis of the surface chemical compositions of the $La_2(Ce_{1\text{-}x}Mg_x)_2O_{7\text{-}\delta}$ catalysts.

Catalyst	C (%)	O (%)	La (%)	Ce (%)	Mg (%)
La ₂ Ce ₂ O ₇	63.3	32.5	2.7	1.5	0.0
La ₂ (Ce _{0.6} Mg _{0.4}) ₂ O _{7-δ}	52.4	34.7	3.0	1.1	8.8
La ₂ (Ce _{0.4} Mg _{0.6}) ₂ O _{7-δ}	55.0	32.3	2.5	0.9	9.2
La ₂ Mg ₂ O ₅	57.4	28.8	1.8	0.0	12.0

Figure 6S. La 3d spectra of the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts.

Figure 7S. Representation of the disordered defective cubic fluorite phase structure for the $La_2(Ce_{0.6}Mg_{0.4})_2O_{7-\delta}$ catalyst.

Scheme 1S. Major products and reaction pathways involved in the oxidative coupling of methane.

$$S_{CO_x} = \frac{moles \ of \ CO \ or \ CO_2 \ formed}{moles \ of \ methane \ reacted} x \ 100 \ (Eq. 2)$$

Figure 8S. CO_x (CO_2 + CO), CO_2 , and CO selectivities in the OCM performed over the $La_2(Ce_{1-x}Mg_x)_2O_{7-\delta}$ catalysts with different Mg contents. Reaction conditions: 200 mg catalyst, $CH_4:O_2:N_2 = 4:1:4$, WHSV = 18,000 mL.h⁻¹.g_{cat}⁻¹, 800 °C.

Table 3S. C₂ yields, O₂ conversions, and C₂, C₂H₄, C₂H₆, CO₂, and CO selectivities for the La₂O₃, MgO, and CeO₂ catalysts. Reaction conditions: 60 mL.min⁻¹ of CH₄:O₂:N₂ = 4:1:4, WHSV = 18,000 mL.h⁻¹.g_{cat}⁻¹, 800 °C.

Catalyst	C₂ yield (%)	C2 selectivity (%)	C ₂ H ₄ selectivity (%)	C ₂ H ₆ selectivity (%)	CO ₂ selectivity (%)	CO selectivity (%)	O ₂ conversion (%)
La ₂ O ₃	7.8	55.8	32.5	23.3	36.1	8.2	100
MgO	7.0	46.7	30.3	16.4	27.6	25.7	85
CeO ₂	0.9	7.0	3.8	3.2	72.7	20.3	100

Table 4S. Performances (conversions and C_2 selectivities or yields) and reaction conditions for catalysts reported in the literature for the OCM reaction.

Catalyst	Reaction condition	Conversion (%)	Selectivity (S) or yield (Y) for C ₂ (%)	Ref.
Mn _x O _y -Na ₂ WO ₄ /COK-12 (ordered mesoporous silica)	775 ºC, 100 mg catalyst, CH₄/O₂ = 4	24	60 (S)	[1]
Li/Sm ₂ O ₃ /MgO	700 ºC, 0.4 g catalyst, 2400 h ⁻¹ , CH ₄ /O ₂ = 4	24	64 (S)	[2]
Sm ₂ O ₃ /MgO	700 °C, 0.4 g catalyst, 2400 h ⁻¹ , CH ₄ /O ₂ = 4	22	52 (S)	[2]
Mn_xO_y -Na ₂ WO ₄ supported over SBA-15	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	14	70 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /La ₂ O ₃	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	18	34 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /CaO	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	18	26 (S)	[3]

Mn _x O _y -Na ₂ WO ₄ /SrO	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	5.4	25 (S)	[3]
Mn_xO_y -Na ₂ WO ₄ /Al ₂ O ₃	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	13	25 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /ZrO ₂	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	10	21 (S)	[3]
Mn_xO_y -Na ₂ WO ₄ /Fe ₂ O ₃	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	2.3	73 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /Fe ₃ O ₄	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	1.6	63 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /TiO ₂ -rutile	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	3.6	79 (S)	[3]
Mn _x O _y -Na ₂ WO ₄ /TiO ₂ - anatase	750 ºC, 50 mg catalyst, CH₄/O₂ = 4	1.6	63 (S)	[3]
Cs/Sr/MgO	794 ºC, 1 g catalyst, CH₄/O₂ = 3	33	59 (S)	[4]
Cs/Ba/MgO	820 ºC, 1 g catalyst, CH₄/O₂ = 3	32	57 (S)	[4]
1 wt.% Li/MgO	800 ºC, 4500 h⁻¹, CH₄/O₂ = 2	38	35 (S)	[5]
CaO/ZnO, Ca/Zn = 1.3	800 ºC, 4500 h⁻¹, CH₄/O₂ = 2	36	30 (S)	[5]
$Na_2WO_4/Mn/SiO_2$	850 ºC, 10,000 h ⁻¹ , CH ₄ /O ₂ = 3.5	32	57 (S)	[6]
Na ₂ WO ₄ /Mn/SiO ₂ modified with 16.7 wt.% MgO	850 ºC, 10,000 h ⁻¹ , CH₄/O₂ = 2	50	38 (S)	[6]
Na ₂ WO ₄ /Mn/SiO ₂ modified with 40 wt.% TiO ₂	850 ºC, 10,000 h ⁻¹ , CH₄/O₂ = 2	39	59 (S)	[6]
10% Na ₂ WO ₄ -5% Mn/SiO ₂ , modified with 5% La	800 ºC, 1 g of catalyst, 10% N₂, CH₄:O₂ = 32:8,	Not reported	24 (Y)	[7]
5 wt.% Ba/La ₂ O ₃	150 ºC, 200 mg catalyst, 18 h⁻¹, (in electric field, 3.0 mA, 600 V)	6.3	32.3 (S)	[8]
Mn _x O _y -Na ₂ WO ₄ /SIC (porous)	800 ºC, 50 mg catalyst, CH₄/O₂ = 4	35	10 (S)	[9]
$La_2Ti_2O_7$	800 ºC, 200 mg catalyst, CH₄/O₂ = 4	~18	~35 (S)	[10]
$La_2Zr_2O_7$	800 ºC, 200 mg catalyst, CH₄/O₂ = 4	~24	~55 (S)	[10]
$La_2Ce_2O_7$	800 ºC, 200 mg catalyst, CH₄/O₂ = 4	~29	~59 (S)	[10]
LaInO ₃	800 ºC, 0.7 h ⁻¹ , CH₄/O₂ = 5	15	54 (S)	[11]
$La_{0.9}Ba_{0.1}InO_{3-\delta}$	800 ºC, 0.7 h ⁻¹ , CH₄/O₂ = 5	22	59 (S)	[11]
La _{0.6} Ba _{0.4} InO _{3-δ}	800 ºC, 0.7 h ⁻¹ , CH₄/O₂ = 5	21	61 (S)	[11]

[1] COLMENARES, M. G., Simon, U., Yildiz, M., Arndt, S., Schomaecker, R., Thomas, A., Goerke, O. Oxidative coupling of methane on the Na2WO4-MnxOy catalyst: COK-12 as an inexpensive alternative to SBA-15. Catalysis Communications, v. 85, p. 75-78, 2016.

[2] ELKINS, Trenton, W. Neumann, B., Bäumer, M., Hagelin-Weaver, H. E.. Effects of Li Doping on MgO-Supported Sm2O3 and TbO x Catalysts in the Oxidative Coupling of Methane. ACS Catalysis, v. 4, n. 6, p. 1972-1990, 2014.

[3] YILDIZ, M. Y., Simon, U., Kailasam, K., Goerke, O., Rosowski, F., Arndt, S. Enhanced catalytic performance of Mn x O y–Na 2 WO 4/SiO 2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chemical Communications, v. 50, n. 92, p. 14440-14442, 2014.

[4] ASEEM, A. Jeba, G. G., Conato, M. T., Rimer, J. D., Harold, M. P. Oxidative coupling of methane over mixed metal oxide catalysts: Steady state multiplicity and catalyst durability. Chemical Engineering Journal, v. 331, p. 132-143, 2018.

[5] RAOUF, Fereshteh; TAGHIZADEH, Majid; YOUSEFI, Mohammad. Influence of CaO–ZnO supplementation as a secondary catalytic bed on the oxidative coupling of methane. Reaction Kinetics, Mechanisms and Catalysis, v. 112, n. 1, p. 227-240, 2014.

[6] LEE, Jong Yeol et al. Scaled-up production of C2 hydrocarbons by the oxidative coupling of methane over pelletized Na2WO4/Mn/SiO2 catalysts: Observing hot spots for the selective process. Fuel, v. 106, p. 851-857, 2013.

[7] GHOSE, Ranjita; HWANG, Hyun Tae; VARMA, Arvind. Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies. Applied Catalysis A: General, v. 472, p. 39-46, 2014.

[8] OSHIMA, Kazumasa, Tanaka, K., Yabe, T., Kikuchi, E., & Sekine, Y.. Oxidative coupling of methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low external temperature. Fuel, v. 107, p. 879-881, 2013.

[9] WANG, Huan, Schmack, R., Paul, B., Albrecht, M., Sokolov, S., Rümmler, S., Kraehnert, R.. Porous silicon carbide as a support for Mn/Na/W/SiC catalyst in the oxidative coupling of methane. Applied Catalysis A: General, v. 537, p. 33-39, 2017.

[10] XU, Junwei Zhang, Y., Xu, X., Fang, X., Xi, R., Liu, Y., Wang, X. Constructing La2B2O7 (B= Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: the effect of phase structures, superoxide anions, and alkalinity on the reactivity. ACS Catalysis, v. 9, n. 5, p. 4030-4045, 2019.
[11] OSHIMA, Kazumasa; SHINAGAWA, Tatsuya; SEKINE, Yasushi. Methane conversion assisted by plasma or electric field. Journal of the Japan Petroleum Institute, v. 56, n. 1, p. 11-21, 2013.

Figure 9S. CO_x (CO_2 +CO), CO_2 , and CO selectivities in the OCM reaction performed over $La_2(Ce_{0.6}Mg_{0.4})_2O_{7-6}$, varying the CH_4/O_2 ratio. Reaction conditions: 200 mg catalyst, WHSV = 18,000 mL.h⁻¹.g_{cat}⁻¹, 800 °C.

Figure 10S. $CO_x(CO_2+CO)$, CO_2 , and CO selectivities in the OCM reaction performed over $La_2(Ce_{0.6}Mg_{0.4})_2O_{7-6}$, varying the temperature. Reaction conditions: 200 mg catalyst, WHSV = 18,000 mL.h⁻¹.g_{cat}⁻¹.

Figure 11S. $CO_x(CO_2+CO)$, CO_2 , and CO selectivities in the OCM reaction performed over the La₂(Ce_{0.6}Mg_{0.4})₂O₇₋₆ catalyst (350 mg), varying the WHSV.

Figure 12S. $CO_x(CO_2+CO)$, CO_2 , and CO selectivities in the OCM reaction performed over the La₂(Ce_{0.6}Mg_{0.4})₂O_{7- δ} catalyst, varying the amount of water in the feed of 0 wt.% (4 CH₄: 1 O₂: 4 N₂), 10 wt.% (4 CH₄: 1 O₂: 4 N₂: 1 H₂O) and 20 wt.% (4 CH₄: 1 O₂: 4 N₂: 2.25 H₂O). Reaction conditions: 200 mg catalyst, 800 °C, WHSV = 18,000 mL.h⁻¹.g_{cat}⁻¹.