Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting information

Interfacial Modification of Co(OH)₂/Co₃O₄ Nanosheet Heterostructure Arrays for Efficient Oxygen Evolution Reaction

Lekai Zheng,^{ab} Lina Hu,^{ab} Yongchuan Hu,^{ab} Fang Liu,^{ab} Zhiming Liu,^{ab} Yanming

Xue,^{ab} Jun Zhang,^{*ab} Hui Liu,^{*a} and Chengchun Tang,^{a,b}

^a School of Material Science and Engineering, Hebei University of Technology,

Dingzigu Road 1, Tianjin 300130, P. R. China

^b Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Guangrongdao

Road 29, Tianjin 300130, P. R. China

E-mail address: junnano@gmail.com (J. Zhang), liuhuihebut@163.com (H. Liu)

Calibration of Hg/HgO electrode and conversion to RHE: The reference electrodes were calibrated prior to measurement in hydrogen saturated solution using two platinum wires as working and counter electrodes in a standard three-electrode system. Cyclic voltammograms (CV) were performed at a scan rate of 1 mV/s, and the average of the two potentials where the current crossed zero was taken to the thermodynamic potential of the HER. In 1 M KOH, the zero current point is at -0.927 V, so $E_{(RHE)} = E_{(Hg/HgO)} + 0.927$ V.

Supporting information consists of 8 pages, including this page.

There are 7 Figures and 1 Table.

List of Figures

Figure S1. (a, b) SEM images of pure carbon cloth at different magnifications.

Figure S2. (a) The SEM image and (b, c) EDS spectra of α -Co(OH)₂/Co₃O₄/CC-600s.

Figure S3. (a) LSV and (b) Tafel curves of IrO_2 and α -Co(OH)₂/Co₃O₄/CC.

Figure S4. LSV curves corresponding to different deposition time of α -Co(OH)₂/Co₃O₄/CC in the first step (10, 15, 20, 25mins).

Figure S5. (a) α -Co(OH)₂/CC, (b) Co₃O₄/CC, (c) α -Co(OH)₂/Co₃O₄/CC-300, (d) α -Co(OH)₂/Co₃O₄/CC-600 and (e) α -Co(OH)₂/Co₃O₄/CC-900 of CV curves.

Figure S6. Adsorption and desorption curves of Co(OH)₂/Co₃O₄/CC-600s and

Co(OH)₂/CC.

Figure S7. (a) XRD pattern, (b) SEM images, (c) Co 2p and (d) O 1s spectra of α -Co(OH)2/Co3O4/CC-600s after long-term durability test.

Figure S1. (a, b) SEM images of pure carbon cloth at different magnifications.

Figure S2. (a) The SEM image and (b, c) EDS spectra of α -Co(OH)₂/Co₃O₄/CC-600s.

Figure S3. (a) LSV and (b) Tafel curves of IrO₂ and α -Co(OH)₂/Co₃O₄/CC.

Figure S4. LSV curves corresponding to different deposition time of α-

Co(OH)₂/Co₃O₄/CC in the first step (10, 15, 20, 25mins).

Figure S5. (a) α-Co(OH)₂/CC, (b) Co₃O₄/CC, (c) α-Co(OH)₂/Co₃O₄/CC-300, (d) α-Co(OH)₂/Co₃O₄/CC-600 and (e) α-Co(OH)₂/Co₃O₄/CC-900 of CV curves.

Figure S6. Adsorption and desorption curves of Co(OH)₂/Co₃O₄/CC-600s and

Co(OH)₂/CC.

Figure S7. (a) XRD pattern, (b) SEM images, (c) Co 2p and (d) O 1s spectra of α -Co(OH)₂/Co₃O₄/CC-600s after long-term durability test.

Catalyst	Substrate	Electrolyte	$\eta_{10}(mv$	Tafel	Ref.
			vs RHE)	slope	
				(mV	
				dec-1)	
This work	CC	1M KOH	275	76	
Fe-CoP/CoO	GCE	1M KOH	219	52	1
Co _{1.8} Ni(OH) _{5.6} @Co _{1.8} NiS _{0.4} (OH) _{4.8}	GCE	0.1M KOH	274	45	2
Fe/Co200	GCE	1M KOH	302	45	3
Co(OH) ₂ NPs/Co ₃ O ₄ NCs	GCE	1M KOH	281	52.7	4
Co ₃ O ₄ /CeO ₂ @N-CNFs	GCE	0.1 M KOH	310	85	5
Co ₃ O ₄ /Co(OH) ₂	GCE	1M KOH	373	103.1	6
Fe ₃ O ₄ /Co(OH) ₂ NSs	GCE	0.1 M KOH	390	61.1	7
CoFe LDH/Coo.85Se	CC	1M KOH	241	48	8

Table S1. The OER performances of α -Co(OH)₂/Co₃O₄/CC with previously reported non-precious metal electrocatalysts.

CC: Carbon cloth

GCE: Glassy carbon electrode

Reference

- X. H. A, S. Z. B, J. S. A, L. Y. A, X. Q. A, R. H. A, Y. W. A, H. Z. A and J. Z. A, *Nano Energy*, 2019, 56, 109-117.
- B. Wang, C. Tang, H. F. Wang, X. Chen, R. Cao and Q. Zhang, Adv. Mater., 2019, 31, 1805658.1805651-1805658.1805657.
- H. Yiyin, Y. Rui, A. Ganesan, X. Jiafang, L. Jiangquan, Z. Xiaotao, W. Xueyuan, W. Maoxiang, L. Qiaohong and W. Yaobing, ACS Energy Lett., 2018, acsenergylett.8b01071-.
- X. Hui, W. Jingjing, Z. Min, L. Chaofan, S. Yukihide, W. Caiqin and D. Yukou, *Nanoscale*, 2018, 10, 10.1039.C1038NR05883K-.
- 5. T. Li, S. Li, Q. Liu, Y. Tian and Y. Tang, ACS Sustain. Chem. Eng., 2019, 2019.
- 6. X. Q. Du, H. Pan and Y. Zhi, New J. Chem., 2018, 10.1039.C1037NJ05146H.
- 7. F. Sun, L. Li, G. Wang and Y. Lin, J. Mater. Chem. A, 2017, 5.
- W. Jin, F. Liu, X. Guo, J. Zhang, L. Zheng, Y. Hu, J. Mao, H. Liu, Y. Xue and C. Tang, *Catal.*. *Technol*, 2019, 9, 5736-5744.