Supplementary information

Carbon monoxide formation as an intermediate product in photocatalytic steam reforming of methane with lanthanum-doped sodium tantalate

Wirya Sarwana,^{a,b} Akihiko Anzai,^a Daichi Takami,^a Akira Yamamoto,^{a,c} and Hisao Yoshida,^{a,c,*}

^a Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

- ^b Department of Mechanical Engineering, Sumbawa University of Technology, Olat Maras, Sumbawa, West Nusa Tenggara, 84371, Indonesia
- ^c Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
- * Corresponding author: yoshida.hisao.2a@kyoto-u.ac.jp

Contents

- Fig. S1 Scheme of the flow reactor
- Fig. S2 XRD patterns
- Fig. S3 Relationship between particle size and BET surface area
- Fig. S4 DRS UV-Vis Spectra
- Fig. S5 (A) Photocatalytic performance of the NTO:La(2) in different feed flow rate
- Fig. S5 (B) Photocatalytic performance of the NTO:La(2) in different CH₄/H₂O ratio
- Fig. S6 Photocatalytic performance of the NTO:La(1) sample in different CH₄ concentration.
- Table S1 Photocatalytic activity of various photocatalysts in the PSRM.

Fig. S1 Scheme of the flow reactor employed in the photocatalytic reaction test for PSRM ¹⁻³

Fig. S2 X-ray diffraction patterns of the samples, (a) non-doped NTO, (b) NTO:La(0.5), (c) NTO:La(1), (d) NTO:La(2), (e) NTO:La(5), and (f) NTO:La(2)SS.

Fig. S3 Relationship between particle size and BET surface area of the bare NTO and NTO:La samples prepared by a flux method. The symbols are the actual data. The dashed line was the curve expected from the values for the NTO:La samples with 0–1% of La doping.

Fig. S4 DR UV-Vis Spectra of the samples, (a) non-doped NTO, (b) NTO:La(0.5), (c) NTO:La(1), (d) NTO:La(2), (e) NTO:La(5), and (f) NTO:La(2)SS.

Fig. S5 Photocatalytic production rates of CO (circle), CO₂ (square), and H₂ (diamond) equipped with the CO selectivity (triangle) in various reaction conditions, (A) various flow rates of the feed gas mixture: 15, 30, and 50 ml min⁻¹; light intensity, 35 mW cm⁻²; feed gas composition: CH₄ (35%), steam (2%), and Ar (balance); the photocatalyst, the NTO:La(2) sample, and (B) various CH₄/H₂O ratio in the feed gas: CH₄ (10–40%), steam (1.9-2.8%), and Ar(balance); light intensity, 165 mW cm⁻²; flow rate, 15 ml min⁻¹; the photocatalyst, the NTO:La(1) sample. The photocatalyst used was 1.2 g and the irradiation area was 6 cm², in common.

Fig. S6 Photocatalytic production rates of H₂ (white bar), CO (black bar), CO₂ (gray bar) as well as S_{CO} (white triangle, the CO selectivity) in different CH₄ concentrations, (a) 25% of CH₄, 2.4% of steam, 72.6% of Ar and (b) 90% of CH₄, 0.3% of steam, 9.7% of Ar, over the NTO:La(1) photocatalyst. Photocatalyst: 1.2 g, photoirradiation area: 6 cm², and light intensity: 165 mW cm⁻². Sampling was carried out after 2 hours irradiation.

Entry	Sample	Metal loading amount (wt%)	Production rate / μ mol h ⁻¹			C (0/)	D
			H₂	CO	CO2	3 _{co} (%)	ĸ
1	NTO:La(1)	-	8.0	0.4	1.6	20%	1.1
2	Pt(0.1)/NTO:La(1)	0.1	10.2	0.0	2.7	0%	1.0
3	Pd(0.1)/NTO:La(1)	0.1	9.1	0.0	0.2	0%	12.8
4	Au(0.1)/NTO:La(1)	0.1	7.7	0.3	1.4	17%	1.2
5	Ag(0.1)/NTO:La(1)	0.1	3.6	0.1	0.3	17%	2.4
6	NiO(0.7)/NTO:La(1)	0.7	5.5	0.0	0.4	0%	3.1
7	CuO(1)/NTO:La(1)	1	3.9	0.1	0.7	16%	1.3
8	ZnO(1)/NTO:La(1)	1	0.1	0.0	0.0	0%	-
9	non-doped NTO	-	1.3	0.0	0.0	0%	-
10	Ga ₂ O ₃	-	2.2	0.1	0.4	19%	1.1
11	ZnO	-	0.3	0.0	0.0	0%	-
12	TiO ₂	-	0.2	0.0	0.0	0%	-

Table S1 Photocatalytic activity of various photocatalysts in the PSRM^a

^{*a*} Reaction conditions: photoirradiation area, 6 cm²; feed gas: 25% CH₄, 72.6% Ar, and 2.4% steam (total flow rate: 15 ml min⁻¹); light intensity: 27 mW cm⁻².

References

- 1 A. Yamamoto, S. Mizuba, Y. Saeki and H. Yoshida, Appl. Catal. Gen., 2016, 521, 125–132.
- 2 H. Yoshida, S. Mizuba and A. Yamamoto, *Catal. Today*, 2019, **334**, 30–36.
- 3 A. Anzai, K. Fujiwara, A. Yamamoto and H. Yoshida, *Catal. Today*, 2020, **352**, 1–9.