Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

(Electronic Supplementary Information)

Molecular mechanism of methane dry reforming on Co₃Mo₃N catalyst with dual sites

Narges Manavi, Bin Liu*

Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506

* Corresponding author: Tel: 785-532-4331. Email: binliu@ksu.edu

FIGURE LIST

Fig. S1. Optimized structures of the intermediates listed in Table 2 on Co(0001). C, O, H, and Co are depicted in brown, red, light pink, and dark blue, respectively.

Fig. S2. Optimized structures of the intermediates listed in Table 2 on Mo₂N(110). C, O, H, Mo, and N are depicted in brown, red, light pink, dark blue, and light blue, respectively.

Fig. S3. Optimized transition state structures on Co(0001). Atomic distances (in Å) are labeled and indicated in dashed lines. C, O, H, and Co are depicted in brown, red, white, and dark blue, respectively.

Fig. S4. Optimized transition state structures on Mo-terminated $Mo_2N(110)$. Atomic distances (in Å) are labeled and indicated in dashed lines. C, O, H, Mo, and N are depicted in brown, red, white, pink, and light blue, respectively.

Fig. S5. Free energy profiles depicting on $Co_3Mo_3N(111)$ (black), Co(0001) (red dashed), and $Mo_2N(110)$ (blue dotted) emphasizing the CH_4 activation and COH oxidation pathway at 1000 K and 1 bar. Gas phase CO_2 and CH_4 and corresponding clean surfaces were used as the zero energy references. Similarly, gas phase CO and H_2 , following the reaction stoichiometry, are considered as the final products. The kinetically critical C–H activation step and carbon formation are highlighted with grey bars. The inset figure illustrates the accompanying CO_2 dissociation on respective $Co_3Mo_3N(111)$ (black), Co(0001) (red dashed), and $Mo_2N(110)$ (blue dotted) surfaces under the same condition.

Fig. S6. Optimized transition states for CH₄ activation on transition metal surfaces. The distances (in Å) of the dissociating C–H bond are labeled and indicated in dashed lines.

Fig. S7. Linear scaling relations of the binding energy corresponding to fragments bound in the most stable adsorption site for (a) H versus C/O, (b) CH versus C, (c) CO versus O, (d) OH versus O. The standard deviations, MAE, and MAX are also shown.

Fig. S8. BEP relationship for CH_4 C-H bond activation in terms of dissociation energies (ΔE) and energy barriers (E_a). The standard deviations, MAE, and MAX are also shown.

TABLE LIST

Table S1. Lattice parameters of surface models.

Table S2. Binding energies (eV) of H, CH₃ on their preferred binding sites of the close-packed transition metal surfaces; CH₄ dissociation energies ($^{\Delta}$ E); and C–H bond activation energy barriers (E_a). Literature values are shown in the parentheses.

Table S3. Rate constants of the elementary DRM steps on $Co_3Mo_3N(111)$, Co(0001), $Mo_2N(110)$, and Ni(111). The elementary step indices correspond to the mechanism shown in Table 2 of the main text.

Table S4. Rate constants and equilibrium constants on $Co_3Mo_3N(111)$, Ni(111), Co(0001), and $Mn_2N(110)$ used in Eqns. (S3, S4, S6, S7).

Appendix 1. Derivations of single-site and dual-site microkinetic models for DRM.

Fig. S1

Manavi and Liu

Fig. S2

Manavi and Liu

Fig. S3

Manavi and Liu

Fig. S4

Manavi and Liu

Manavi and Liu

Fig. S6

Manavi and Liu

Fig. S7

Manavi and Liu

<mark>Fig. S8</mark>

Manavi and Liu

Surface	Lattice parameter (Å)	Experimental lattice (Å)		
Co(0001)	2.476	2.501		
Mo ₂ N(¹¹⁰)	4.999	5.044		
Co ₃ Mo ₃ N(111)	7.783	7.813		
Ni(111)	2.491	2.481		
Pt(111)	2.804	2.812		
Cu(111)	2.580	2.561		
Au(111)	2.949	2.950		
lr(111)	2.714	2.741		
Rh(111)	2.705	2.721		
Fe(111)	2.440	2.578		
Pd(111)	2.751	2.798		
Ru(111)	2.711	2.705		

 Table S1. Lattice parameters of surface models.

Surface -	н			CH3	CH₄ dissociation		
	Site	BE, eV (BE _{lit.})	Site	BE (eV) (BE _{lit.})	Δ _{E, eV}	E _a , eV	
lr(111)	top	-2.72 (-2.73 ¹)	fcc	-1.92 (-1.88 ¹)	0.09 (0.06 ²)	0.82 (0.95 ²)	
Rh(111)	fcc	-2.72 (-2.86 ³)	fcc	-1.80 (-1.84 ⁴ ,-1.83 ⁵)	0.21 (0.12 ⁶ , 0.09 ³ , 0.05 ²)	0.83 (0.82 ⁶ , 0.72 ³ , 1.00 ²)	
Ni(111)	fcc	-2.81 (-2.80 ⁷)	top	-1.89 (-1.91 ⁷)	0.03 (0.13 ^{8, 9} , 0.01 ⁷ , 0.15 ¹⁰)	0.95 (1.18 ^{8, 9} , 1.17 ¹⁰ , 0.90 ¹¹ , 0.88 ⁷)	
Cu(111)	fcc	-2.44 (-2.51 ⁹)	fcc	-1.37 (-2.03 ¹²)	0.92 (1.07 ¹² , 1.25 ²)	1.88 (1.77 ¹² , 1.80 ²)	
Fe(111)	hcp	-2.98	fcc	-2.29 (-2.81 ⁹)	-0.67 (-0.63 ¹⁴)	0.01	
Pt(111)	top	-2.79 (-2.74 ¹³)	top	-2.10 (-2.02 ¹³)	-0.18 (-0.13 ¹⁴ , 0.07 ¹⁵ , 0.04 ²)	0.81 (0.84 ¹⁴ , 0.77 ¹⁵ , 1.10 ²)	
Au(111)	fcc	-1.98	-	-1.21	1.53 (1.75 ²)	2.16 (2.25 ²)	
Pd(111)	fcc	-2.82 (-2.68)	top	-1.79 (-1.81 ¹⁶)	0.11 (0.26)	0.85 (0.97)	
Ru(111)	fcc	-2.84	fcc	-2.08	-0.20 (-0.23)	0.70 (0.80 ¹⁷)	

Table S2. Binding energies (eV) of H and CH_3 and their preferred binding sites on close-packed transition metal surfaces; CH_4 dissociation energies ($^{\Delta}E$); and C–H bond activation energy barriers (E_a). The literature values are shown in the parentheses.

Elementary step	Co ₃ Mo ₃ N(111)		Co(0001)		Mo ₂ N(110)		Ni(111)	
	$k_{ m f}$	k _r	$k_{ m f}$	<i>k</i> r	$k_{ m f}$	<i>k</i> r	$k_{ m f}$	<i>k</i> r
R1	1.85E-01	1.60E+13	7.28E-02	7.44E+11	1.65E+00	6.69E+05	4.01E-02	9.08E+11
R2	2.15E-02	3.40E+13	1.52E-04	9.75E+08	5.44E-07	3.27E+06	-	-
R3	6.62E+10	1.92E+08	3.78E+09	1.78E+10	8.03E+08	1.92E+08	7.46E+09	1.11E+10
R4	2.55E+10	1.39E+07	1.47E+12	2.87E+10	1.72E+11	6.56E+07	2.87E+11	3.00E+09
R5	2.44E+08	3.93E+08	2.85E+07	3.36E+09	1.53E+11	2.87E+10	1.28E+06	7.13E+08
R6	1.49E+01	7.56E+05	2.65E+02	4.79E+13	2.78E+01	2.97E+09	4.01E+02	1.63E+13
R7	5.41E+09	1.39E+07	1.35E+11	3.89E+05	6.15E+11	3.79E+03	1.58E+10	1.69E+05
R8	2.39E+02	2.53E+07	5.99E+03	6.69E+00	1.03E-01	8.26E+04	1.05E+05	2.46E-02
R9	3.33E+06	9.83E+09	5.36E+06	3.49E+08	1.00E+03	6.62E+10	1.77E+07	1.70E+08
R10	1.63E+06	4.11E+10	1.75E+04	3.30E+03	4.00E+01	5.36E+06	2.33E+06	4.72E+03
R11	4.26E+09	2.72E+05	4.42E+08	3.59E+04	5.36E+06	4.85E-01	2.44E+08	2.60E+03
R12	5.77E+04	5.03E+11	1.18E+05	5.41E+09	1.89E+02	2.37E+12	2.14E+05	8.33E+07
R13	1.72E+11	8.33E+07	1.03E+12	2.62E+06	2.35E+09	2.51E+04	2.10E+12	7.07E+05
R14	7.60E+03	8.10E+11	3.07E+05	2.01E+10	1.12E+00	1.94E+11	6.27E+05	3.79E+09
R15	3.24E+10	6.27E+05	-	-	1.53E+11	1.67E+02	4.26E+09	2.53E+07
R16	1.31E+12	2.16E+08	1.03E+12	1.34E+08	-	-	6.15E+12	1.02E+09
R17	7.96E+05	3.39E+12	8.97E+05	2.24E+07	3.09E+08	2.55E+10	7.96E+05	3.39E+12
R18	1.70E+08	2.46E+11	6.56E+07	1.57E+07	-	-	1.70E+08	2.46E+11
R19	1.07E+11	1.90E+05	1.16E+12	9.74E+06	1.31E+12	6.45E+01	1.07E+11	1.90E+05
R20	8.89E+02	1.09E+04	7.60E+03	2.44E-05	8.97E+05	4.43E-05	8.89E+02	1.09E+04
R21	2.72E+03	1.07E-02	1.62E+05	2.82E-01	4.03E+00	2.40E-02	1.68E+04	1.29E-01
R22	2.62E+07	1.82E+01	2.07E+08	2.22E+01	8.15E+02	2.00E+01	1.26E+08	9.84E+00
R23	1.22E+07	1.60E+02	2.40E+09	6.42E+02	5.71E-01	1.93E+02	1.56E+10	3.38E+02

Table S3. Calculated rate constants for the elementary DRM steps on $Co_3Mo_3N(111)$, Co(0001), $Mo_2N(110)$, and Ni(111). The elementary step indices correspond to the mechanism shown in Table 2 of the main text.

Appendix 1. Derivation of single-site and dual-site microkinetic models for DRM

All elementary steps are generally described by Eqn. (S1),

$$A^* + B^* \leftrightarrow AB^{\#} \to C^* + D^*, \tag{S1}$$

where $AB^{\#}$ represents the activated transition state. According to Eqn. (S2), the rate constants (k) becomes:

$$k = \frac{k_B T}{h} exp(\frac{-E_a}{RT}),$$
(S2)

where k_B is the Boltzmann constant, h is the Planck's constant, R is the gas constant (i.e., 8.314 J/K mole), and T is temperature (in K). All E_a were obtained from DFT CI-NEB and dimer calculations detailed in the main text.

Specifically, the forward and reverse rate constants for the rate-determining CH_4 dissociative adsorption are expressed by Eqns. (S3-S4):

$$k_f = \frac{k_B T \quad q^{\#}}{h \quad q_{CH_4(g)}} \exp\left(-\frac{E_{af}}{RT}\right)$$
(S3)

$$k_{r} = \frac{k_{B}T}{h} \frac{q^{\#}}{q_{CH_{3}^{*}}} q_{H^{*}} \exp\left(-\frac{E_{ar}}{RT}\right)$$
(S4)

where q_{TS} , q_{CH_4} , q_{surf} , $q_{CH_3^*}$, and q_{H^*} are the partition functions for the transition state (TS), the reactant, and product states with respect to their ground states, respectively. These partition functions were estimated based on the standard statistical mechanical approach at 1 bar and 973.15 K.

 E_{af} and E_{ar} , with zero-point energy (ZPE) corrections included, correspond to the activation energies of the forward and reverse elementary step, respectively.

For molecular adsorption and desorption process (e.g., CO_2 adsorption), as expressed by Eqn. (S5),

$$A_{(g)} + \theta^* \leftrightarrow A^*$$
(S5)

It can be shown that the rate constants for molecular adsorption and desorption can be expressed by Eqns. (S6) and (S7)¹⁸:

$$k_{adsorption} = \frac{1}{N_0 \sqrt{2\pi k_B T M_A} q_{r_A(g)}} q_{v_A(g)}}.$$
 (S6)

$$k_{desorption} = e \frac{k_B T}{h} \exp\left(-\frac{\Delta E}{RT}\right)$$
(S7)

where N_0 is the number of surface sites of the exposed surface. M_A is the molecular mass of the adsorbate (A). $q_{r_A(g)}$ and $q_{v_A(g)}$ are the rotational and vibrational partition functions of the gasphase adsorbate, respectively. ΔE is approximated with the binding energy of the adsorbate.

A *Mathematica* script was developed to obtain the DRM turnover frequencies (TOFs) and surface coverage at $^{P} = 1$ bar and 973.15 K. The initial feed consists of equimolar CH₄ and CO₂ (i.e., $p_{CH_4} = p_{CO_2} = 0.5$ bar) at a molar flow rate of 1 mole/s. The composition for the exiting gas stream consisting of CO, H₂ and H₂O, and the unreacted CH₄, CO₂, was estimated based on the overall equilibrium constant. The relevant reactions consist of the DRM (S8) and the reverse water-gas shift reaction (S9):

$$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$$
, $\Delta H^\circ = 247.3 \, kJ/mol$ (S8)

$$H_2 + CO_2 \leftrightarrow CO + H_2O, \qquad \Delta H^\circ = -41.2 \ kJ/mol \tag{S9}$$

The estimated equilibrium constants at 1 bar and 973.15 K are 5.92 and 0.594, respectively. Hence, thermodynamics will favor DRM strongly over the reverse water-gas shift

reaction at high temperatures. The composition of the exiting gas stream were determined with Eqns. (S10) and (S11):

$$K_{DRM}(T) = \frac{\left(\frac{p_{H2}}{P}\right)^2 \left(\frac{p_{CO}}{P}\right)^2}{\left(\frac{p_{CH_4}}{P}\right) \left(\frac{p_{CO_2}}{P}\right)},$$
(S10)
$$K_{RWGS}(T) = \frac{p_{H_2} * p_{CO_2}}{p_{CO} * p_{H_2O}},$$
(S11)

where the partial pressures are represented by Eqns. (S12-S16) in terms of CH₄ conversion $\binom{x_{CH_4}}{2}$ and the extent of reaction of RWGS (ξ).

$$p_{CH_4} = \frac{1 - x_{CH_4}}{2 * (1 + x_{CH_4})} P$$
(S12)

$$p_{CO_2} = \frac{1 - x_{CH_4} * \xi}{2 * (1 + x_{CH_4})} P$$
(S13)

$$p_{CO} = \frac{2 * F_0 * x_{CH_4} + \xi}{2 * F_0 * (1 + x_{CH_4})} P$$
(S14)

$$p_{CO} = \frac{2 * F_0 * x_{CH_4} - \xi}{2 * F_0 * (1 + x_{CH_4})} P$$
(S15)

$$p_{H_2 0} = \frac{\xi}{2 * F_0 * (1 + x_{CH_4})} P$$
(S16)

As mentioned in the main text, a reduced DRM mechanism was adopted to facilitate microkinetic modeling. The first activation of CH_4 was still treated as the rate-limiting step (RLS) and will be used to determine the rate of DRM. In addition, the CH_4 decomposition sequence was represented as a *lumped* step (forming CH, see R), by neglecting the formation and oxidations of CH_2 and CH_3 . Because the formation of CHOH is significantly slower (see Table S4),

the CHOH intermediate will be omitted. Instead, the oxidation of carbonaceous species (i.e., C and CH) is represented by R4 and R7, to form CO. The oxidants (i.e., O and OH) are generated via R3 and R6, respectively. Hence, there are 10 elementary steps, involving 5 gas phase species (CH₄, CO₂, CO, H₂, and H₂O) and 8 surface intermediates (*, C, CH, CO₂, CO, O, H, and OH) in the reduced DRM model.

$CH_4(g) + 4 * \leftrightarrow CH^* + 3H^*$	R1
$CO_2(g) + * \leftrightarrow CO_2^*$	R2
$CO_2^* + * \leftrightarrow CO^* + O^*$	R3
$CH^* + O^* \leftrightarrow CO^* + H^*$	R4
$CH^* + * \leftrightarrow C^* + H^*$	R5
$H^* + O^* \leftrightarrow OH^* + *$	R6
$C^* + OH^* \leftrightarrow CO^* + H^*$	R7
$CO^* \leftrightarrow CO(g) + *$	R8
$H^* + OH^* \leftrightarrow H_2O(g) + 2*$	R8
$H^* + H^* \leftrightarrow H_2(g) + 2 *$	R10

The quasi-steady state assumption (QSSA) was applied to each surface species (excluding vacancies) in order to establish a set of differential equations describing each surface species, as in Eqns. (S17-S24):

$$r_{1} = k_{1f} P_{CH_{4}} \theta_{*}^{4} - k_{1r} \theta_{CH} \theta_{H}^{3}$$
(S17)

$$\frac{d\theta_{CO_2}}{dt} = k_{2f} P_{CO_2} \theta_* - k_{2r} \theta_{CO_2}$$
(S18)

$$\frac{d\theta_0}{dt} = k_{3f}\theta_{CO_2}\theta_* - k_{3r}\theta_{CO}\theta_0$$
(S19)

$$\frac{d\theta_{CH}}{dt} = -k_{4f}\theta_{CH}\theta_0 + k_{4r}\theta_{C0}\theta_H - k_{5f}\theta_{CH}\theta_* + k_{5r}\theta_C\theta_H$$
(S20)

$$\frac{d\theta_{OH}}{dt} = k_{6f}\theta_{O}\theta_{H} + k_{6r}\theta_{OH}\theta_{*}$$
(S21)

$$\frac{d\theta_C}{dt} = -k_{7f}\theta_C\theta_{0H} + k_{7r}\theta_{C0}\theta_H$$
(S22)

$$\frac{d\theta_{CO}}{dt} = -k_{8f}\theta_{CO} + k_{8r}P_{CO}\theta_{*}$$
(S23)

$$\frac{d\theta_{H}}{dt} = -k_{9f}\theta_{0H}\theta_{H} + k_{9r}P_{H_{2}0}\theta_{*}^{2} - k_{10f}\theta_{H}^{2} + k_{10r}P_{H_{2}}\theta_{*}^{2}$$
(S24)

The rate constants corresponding to the above model are listed in Table S5.

Table S4. Rate constants and equilibrium constants on $Co_3Mo_3N(111)$, Ni(111), Co(0001), and $Mn_2N(110)$ used in Eqns. (S3, S4, S6, S7).

Elementary		Co ₃ Mo ₃ N(111)		Ni(111)			
step	k _{fi}	k _{ri}	K _i	k _{fi}	k _{ri}	K _i	
R1	1.85E-01	1.39E+07	1.33E-08	4.00E-02	3.00E+9	3.33E-11	
R2	1.48E+01	7.57E+05	1.96E-05	4.01E+02	1.63E+13	2.46E-11	
R3	5.41E+09	1.39E+07	3.89E+02	1.58E+10	1.69E+05	9.35E+04	
R4	5.77E+04	8.33E+07	6.92E-04	2.14E+05	7.07E+05	3.03E-01	
R5	2.44E+08	3.93E+08	6.21E-01	1.28E+06	7.13E+08	1.80E-03	
R6	3.33E+06	9.83E+09	3.39E-04	1.77E+07	1.70E+08	1.04E-01	
R7	1.63E+06	2.72E+05	5.99E+00	2.33E+06	2.60E+03	8.96E+02	
R8	2.72E+03	1.07E-02	2.54E+05	1.68E+04	1.28E-01	1.31E+05	
R9	1.22E+07	1.60E+02	7.63E+04	1.56E+10	3.38E+02	4.62E+07	
R10	2.62E+07	1.82E+01	1.44E+06	1.25E+08	9.84E+00	1.27E+07	
Elementary	Co(0001)			Mo ₂ N(110)			
step	k _{fi}	k _{ri}	K _i		k _{ri}	K _i	
R1	7.28E-02	1.78E+09	4.09E-11	1.65E+00	6.69E+05	2.46E-06	
R2	1.00E+00	4.79E+13	2.09E-12	2.78E+01	2.97E+09	9.36E-09	
R3	1.35E+11	3.89E+05	3.47E+05	6.15E+12	3.79E-04	1.62E+16	
R4	1.18E+05	2.62E+06	4.50E-02	1.89E+02	2.51E+04	7.53E-03	
R5	2.85E+07	3.36E+09	8.48E-03	1.53E+11	2.87E+10	5.33E+00	
R6	5.36E+06	3.49E+08	1.54E-02	1.00E+03	6.62E+10	1.51E-08	
R7	1.75E+04	3.30E+02	5.30E+01	4.00E+01	4.85E-01	8.25E+01	
R8	1.62E+05	2.82E-01	5.74E+06	4.03E+00	2.40E-02	1.68E+02	
R9	2.40E+09	6.42E+02	3.74E+06	5.70E-01	1.93E+02	2.95E-03	
R10	2.07E+08	2.22E+01	9.32E+06	8.15E+02	2.00E+01	4.08E+01	

According to QSSA, the surface coverage expressions are represented by Eqns. (S25-S32 in Table S5) for the *single-site* mechanism.

Single-site mechanism
 Dual-site mechanism

 (S25)

$$\theta_{CO_2} = K_2 p_{CO_2} \theta$$
,
 (S43)
 $\theta_{CO_2} = K_2 p_{CO_2} \theta_1$,

 (S26)
 $\theta_0 = \frac{K_3 \theta_{CO_2} \theta}{\theta_{CO}} = \frac{K_2 K_3 K_8 p_{CO_2}}{p_{CO}} \theta_*$
 (S44)
 $\theta_0 = \frac{K_3 \theta_{CO_2} \theta_2}{\theta_{CO}} = \frac{K_2 K_3 K_8 p_{CO_2}}{p_{CO}} \theta_2$,

 $\theta_{CH} = \frac{\frac{k_4 p_{CO}}{K_8} + \frac{k_5 p_c^2 \sigma}{K_2 K_3 K_8 K_7 K_8^2 p_{CO_2}} + k_{5f}$
 $\theta_{CH} = \frac{K_4 p_{CO}}{K_8 p_{L_2O} + k_{10} p_{H_2}} \theta_1$,

 $\theta_{CH} = \frac{\frac{k_4 p_{CO}}{K_8 p_{L_2O} + k_{10} p_{H_2}} \theta_1$,
 $\theta_{CH} = \frac{k_4 p_{CO}}{p_{CO}} + k_{10} p_{H_2} \theta_2$,

 $\frac{k_{9} p_{H_2O} + k_{10} p_{H_2}}{p_{CO} + k_{10} p_{H_2}} \theta_1$,
 $\theta_{CH} = \frac{k_{10} p_{CO} + k_{10} p_{H_2} \theta_2$,

 $\frac{k_{9} p_{H_2O} + k_{10} p_{H_2}}{p_{CO} + k_{10} p_{H_2}} \theta_1$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,

 $\frac{k_{9} p_{H_2O} + k_{10} p_{H_2}}{p_{CO} + k_{10} p_{H_2}} \theta_1$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_{2} K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_{2} K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_{2} K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2}}{p_{CO} + k_{10} p_{H_2}} \theta_2$,
 $\theta_{CH} = \frac{k_2 K_3 K_6 K_8 p_{CO_2} p_2}{p_{CO} + k_{10}$

(S32)
$$\begin{array}{c} \theta_{*} + \theta_{C} + \theta_{CH} + \theta_{CO} + \theta_{CO_{2}} + \theta_{0} + \theta_{0H} + \theta_{1} \\ (S50) \\ (S51) \\ \theta_{2*} + \theta_{0} + \theta_{0H} + \theta_{H} + \theta_{CH} = 0.3 \end{array}$$

The concentrations of all surface species are related to θ_* . Then, the RLS (r_1) can be expressed by Eqn. (S33).

$$r_{1} = k_{1f} p_{CH_{4}} \left[1 - \frac{\frac{k_{4r} p_{CO}}{K_{8}} + \frac{k_{5r} p_{CO}^{2}}{K_{2} K_{3} K_{6} K_{7} K_{8}^{2} p_{CO_{2}}}}{K_{1} p_{CH_{4}} \left(\frac{k_{4f} K_{2} K_{3} K_{6} K_{7} K_{8}^{2} p_{CO_{2}}}{p_{CO}} + k_{5f} \right)} \left(\frac{k_{9r} p_{H_{2}O} + k_{10r} p_{H_{2}}}{p_{CO}} + k_{10f} \right)^{2} \right] \theta_{*}^{4}$$
(S33)

From a dimensional analysis, the RLS can be further simplified as Eqn. (S34):

$$r_{1} = k_{1f} p_{CH_{4}} \theta_{*}^{4} \left[1 - \frac{p_{C0}^{2} p_{H_{2}}^{2}}{K_{1} K_{2} K_{3} K_{5} K_{6} K_{7} K_{8}^{2} p_{CH_{4}} p_{CO_{2}}} \right]$$
(S34)

The *dual-site* mechanism accounts for DRM occurring on two distinct active sites, denoted as θ_{1*} and θ_{2*} , as established by Eqns. (S35-S42). We assumed that each species occupies their preferred binding sites and the diffusions between different active domains be neglected. The surface coverage for each intermediate are represented by Eqns. (S43-S51) listed in Table S5.

$$r_1 = k_{1f} P_{CH_4} \theta_{1*}^4 - k_{1r} \theta_{CH} \theta_H^3$$
(S35)

$$\frac{d\theta_{CO_2}}{dt} = k_{2f} P_{CO_2} \theta_{2*} - k_{2r} \theta_{CO_2}$$
(S36)

$$\frac{d\theta_0}{dt} = k_{3f}\theta_{CO_2}\theta_{1*} - k_{3r}\theta_{CO}\theta_0$$
(S37)

$$\frac{d\theta_{CH}}{dt} = -k_{4f}\theta_{CH}\theta_0 + k_{4r}\theta_{C0}\theta_H - k_{5f}\theta_{CH}\theta_{1*} + k_{5r}\theta_C\theta_H$$
(S38)

$$\frac{d\theta_{OH}}{dt} = k_{6f}\theta_{O}\theta_{H} + k_{6r}\theta_{OH}\theta_{2*}$$
(S39)

$$\frac{d\theta_C}{dt} = -k_{7f}\theta_C\theta_{OH} + k_{7r}\theta_{CO}\theta_H$$
(S40)

$$\frac{d\theta_{CO}}{dt} = -k_{8f}\theta_{CO} + k_{8r}P_{CO}\theta_{1*}$$
(S41)

$$\frac{d\theta_{H}}{dt} = -k_{9f}\theta_{0H}\theta_{H} + k_{9r}P_{H_{2}0}\theta_{2*}^{2} - k_{10f}\theta_{H}^{2} + k_{10r}P_{H_{2}}\theta_{2*}^{2}$$
(S42)

The heat map contour plot was generated using ${}^{BE}c$ and ${}^{BE}o$, which are in general $({}^{C_xH_yO_z^*})$ defined by Eqns. (S52-S53).

$$xCH_4 + (-2x + 1/2y - z)H_2 + zH_2O + * \rightarrow C_xH_yO_z^*$$
(S52)

$$E_{C_{x}H_{y}O_{z}^{*}} = E_{C_{x}H_{y}O_{z}^{*}}^{vasp} - xE_{CH_{4}}^{vasp} + (2x - 1/2y + z)E_{H_{2}}^{vasp} - zE_{H_{2}O}^{vasp} - E_{*}^{vasp}$$
(S53)

Then, the binding energies of H, CH, CO, and OH were estimated using Eqns. S54-S57. These linear scaling relationships were established and illustrated in Figure S7. Moreover, the C–H bond activation energies were estimated using a BEP relationship based on Eqn. S58 (also see Figure S8).

$$BE_H = 0.16BE_C + 0.12BE_O - 0.92 \tag{S54}$$

$$BE_{CH} = 0.76 BE_C - 0.45 \tag{S55}$$

$$BE_{CO} = 0.52 BE_C + 0.34 \tag{S56}$$

$$BE_{OH} = 0.63 BE_0 - 0.18 \tag{S57}$$

$$E_{a,C-H} = 0.96 \,\Delta E + 0.81 = 0.96 \left(BE_{CH} + 3BE_{H}\right) + 0.81 \tag{S58}$$

Notes and references

- 1. W. P. Krekelberg, J. Greeley and M. Mavrikakis, *The Journal of Physical Chemistry B*, 2004, **108**, 987-994.
- 2. D. Hibbitts and M. Neurock, *Surface Science*, 2016, **650**, 210-220.
- 3. B. S. Bunnik and G. J. Kramer, *Journal of Catalysis*, 2006, **242**, 309-318.
- 4. M. Mavrikakis, J. Rempel, J. Greeley, L. B. Hansen and J. K. Nørskov, *The Journal of Chemical Physics*, 2002, **117**, 6737-6744.

- 5. H. Xiao and D. Xie, *Surface Science*, 2004, **558**, 15-22.
- 6. B. Wang, L. Song and R. Zhang, *Applied Surface Science*, 2012, **258**, 3714-3722.
- 7. Z. Wang, X. M. Cao, J. Zhu and P. Hu, *Journal of Catalysis*, 2014, **311**, 469-480.
- 8. H. Liu, R. Yan, R. Zhang, B. Wang and K. Xie, *Journal of Natural Gas Chemistry*, 2011, **20**, 611-617.
- 9. H. Liu, B. Wang, M. Fan, N. Henson, Y. Zhang, B. F. Towler and H. G. Harris, *Fuel*, 2013, **113**, 712-718.
- 10. S.-G. Wang, X.-Y. Liao, J. Hu, D.-B. Cao, Y.-W. Li, J. Wang and H. Jiao, *Surface Science*, 2007, **601**, 1271-1284.
- 11. Y.-A. Zhu, D. Chen, X.-G. Zhou and W.-K. Yuan, *Catalysis Today*, 2009, **148**, 260-267.
- 12. T. Niu, Z. Jiang, Y. Zhu, G. Zhou, M. A. van Spronsen, S. A. Tenney, J. A. Boscoboinik and D. Stacchiola, *The Journal of Physical Chemistry B*, 2018, **122**, 855-863.
- 13. A. Trinchero, A. Hellman and H. Grönbeck, *Surface Science*, 2013, **616**, 206-213.
- 14. Q. Qi, X. Wang, L. Chen and B. Li, *Applied Surface Science*, 2013, **284**, 784-791.
- 15. R. Zhang, L. Song and Y. Wang, *Applied Surface Science*, 2012, **258**, 7154-7160.
- 16. C.-Q. Lv, K.-C. Ling and G.-C. Wang, *The Journal of Chemical Physics*, 2009, **131**, 144704.
- 17. X. Wang, Q. Yuan, J. Li and F. Ding, *Nanoscale*, 2017, **9**, 11584-11589.
- 18. I. Chorkendorff, J. W. Niemantsverdriet, W. John and Sons, *Concepts of modern catalysis and kinetics*, Wiley-VCH, 2003.