Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Bimetallic CuFe nanoparticles as active and stable catalyst for chemoselective

hydrogenation of biomass derived platform molecules

Karen S. Arias,† Lichen Liu,† Andrea Garcia-Ortiz, Maria J. Climent, Patricia Concepcion, Sara Iborra,*Avelino Corma*,

Instituto de Tecnología Química, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain

[†] These authors contribute equally to this work.

*Corresponding authors. E-mail: <u>acorma@itq.upv.es</u> (A.C.) <u>siborra@itq.upv.es</u> (S.I.)

Figure S1. FESEM images of Fe@C sample. Fe nanoparticles of 50-200 nm can be observed.

Figure S2. Catalytic performance of Fe@C catalyst after pre-reduction treatment.

The catalyst (10 mg) has been pre-reduced by H_2 (10 bar) at 260 °C for 6 h in autoclave before of reaction. HMF, dodecane and MeOH were dried previously with molecular sieves and N_2 flow. After the pre-reduction treatment, a solution of HMF (0.5 mmol) in MeOH (5 mL) and dodecane as standard was transferred to autoclave at room temperature with a syringe and was purged three times with H_2 . Then the autoclave was pressurized with 10 bar of H_2 . The stirring speed is kept at 1000 rpm and the reactor was heated at 110 °C.

Figure S3. Morphological characterization of 25Cu/Fe@C sample by STEM-EDS mapping with 25 wt% of Cu. In these images, Cu nanoparticles as well as highly dispersed Cu species on Fe@C nanoparticles can be observed.

Figure S4. Morphological characterization of 25Cu/Fe@C sample by STEM-EDS mapping with 25 wt% of Cu. In these images, Cu nanoparticles as well as highly dispersed Cu species on Fe@C nanoparticles can be observed.

Figure S5. Morphological characterization of 25Cu/Al₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on Al₂O₃ can be observed.

Figure S6. Morphological characterization of 25Cu/Al₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on Al₂O₃ can be observed.

Figure S7. Morphological characterization of 25Cu/Al₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on Al₂O₃ can be observed.

Figure S8. Morphological characterization of 25Cu/Fe₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on the Fe support can be observed.

Figure S9. Morphological characterization of 25Cu/Fe₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on the Fe support can be observed.

Figure S10. Morphological characterization of 25Cu/Fe₂O₃ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on the Fe support can be observed.

Figure S11. Morphological characterization of 25Cu/TiO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on TiO₂ can be observed.

Figure S12. Morphological characterization of 25Cu/TiO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on TiO₂ can be observed.

Figure S13. Morphological characterization of 25Cu/TiO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on TiO₂ can be observed.

Figure S14. Morphological characterization of 25Cu/ZrO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on ZrO₂ can be observed.

Figure S15. Morphological characterization of 25Cu/ZrO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on ZrO₂ can be observed.

Figure S16. Morphological characterization of 25Cu/ZrO₂ sample by STEM-EDS mapping. In these images, Cu nanoparticles as well as highly dispersed Cu species on ZrO₂ can be observed.

Figure S17. Catalytic performance of Cu catalysts supported on conventional solid carriers for hydrogenation of HMF. (a) 25Cu/Al₂O₃, (b) 25Cu/Fe₂O₃, (c) 25Cu/TiO₂ and (d) 25Cu/ZrO₂. Reaction conditions: 10 mg solid catalyst, 0.5 mmol HMF, 5 mL methanol as solvent, 110 °C and 10 bar of H₂.

Figure S18. Morphological characterization of 5Cu/Fe@C sample by STEM-EDS mapping with 5 wt% of Cu. In these images, Cu nanoparticles as well as highly dispersed Cu species on Fe@C nanoparticles can be observed.

Figure S19. Morphological characterization of 5Cu/Fe@C sample by STEM-EDS mapping with 5 wt% of Cu. In these images, Cu nanoparticles as well as highly dispersed Cu species on Fe@C nanoparticles can be observed.

Figure S20. Morphological characterization of 5Cu/Fe@C sample by STEM-EDS mapping with 5 wt% of Cu. In these images, Cu nanoparticles as well as highly dispersed Cu species on Fe@C nanoparticles can be observed.

Figure S21. Stability test of Cu/Fe@C sample for hydrogenation of HMF.

Sample	Mole percentage of Fe	Mole percentage of Cu
Fe0.92Cu0.08	0.92	0.08
Fe _{0.88} Cu _{0.12}	0.88	0.12
Fe0.76Cu0.24	0.76	0.24
Fe _{0.50} Cu _{0.50}	0.50	0.50
Fe _{0.25} Cu _{0.75}	0.25	0.75

Table S1. Chemical compositions of various CuFe bimetallic catalysts, determined by ICP.

Figure S22. FESEM images of Cu@C sample. Cu nanoparticles of 50-500 nm can be observed.

Figure S23. FESEM-EDS mapping of Cu_{0.75}Fe_{0.25}@C sample in two different areas.

Figure S24. FESEM-EDS mapping of Cu_{0.50}Fe_{0.50}@C sample in two different areas.

Figure S25. FESEM-EDS mapping of Cu_{0.24}Fe_{0.76}@C sample in two different areas.

Figure S26. FESEM-EDS mapping of Cu_{0.12}Fe_{0.88}@C sample in two different areas.

Figure S27. FESEM-EDS mapping of Cu_{0.08}Fe_{0.92}@C sample in two different areas.

Figure S28. Low-magnification TEM images of Cu_{0.08}Fe_{0.92}@C sample.

Figure S29. High-magnification TEM images of Cu_{0.08}Fe_{0.92}@C sample.

Figure S30. Low-magnification TEM images of Cu_{0.12}Fe_{0.88}@C sample.

Figure S31. High-resolution TEM images of Cu_{0.12}Fe_{0.88}@C sample.

Figure S32. Low-magnification TEM images of Cu_{0.24}Fe_{0.76}@C sample.

Figure S33. High-resolution TEM images of Cu_{0.24}Fe_{0.76}@C sample.

Figure S34. Low-magnification TEM images of Cu_{0.50}Fe_{0.50}@C sample.

Figure S35. High-resolution TEM images of Cu_{0.50}Fe_{0.50}@C sample.

Figure S36. Low-magnification TEM images of Cu_{0.75}Fe_{0.25}@C sample.

Figure S37. High-resolution TEM images of Cu_{0.75}Fe_{0.25}@C sample.

Figure S38. High-resolution TEM images of Cu@C sample. It should be noted that, there are also very big Cu nanoparticles present in the Cu@C sample.

Figure S39. STEM-EDS mapping of Cu and Fe in the Cu_{0.76}Fe_{0.24} sample. (a-c) mapping of Cu and Fe in this area and the corresponding HAADF-STEM image (d).

Figure S40. STEM-EDS mapping of Cu and Fe in the $Cu_{0.50}Fe_{0.50}$ sample. (a-c) mapping of Cu and Fe in this area and the corresponding HAADF-STEM image (d).

Figure S41. STEM-EDS mapping of Cu and Fe in the Cu_{0.24}Fe_{0.76} sample. (a-c) mapping of Cu and Fe in this area and the corresponding HAADF-STEM image (d).

Figure S42. STEM-EDS mapping of Cu and Fe in the Cu_{0.12}Fe_{0.88} sample. (a-c) mapping of Cu and Fe in this area and the corresponding HAADF-STEM image (d).

Figure S43. STEM-EDS mapping of Cu and Fe in the $Cu_{0.08}Fe_{0.92}$ sample. (a-c) mapping of Cu and Fe in this area and the corresponding HAADF-STEM image (d).

Figure S44. Kinetic curve of the hydrogenation of HMF with $Cu_{0.08}Fe_{0.92}$ @C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (\blacksquare), BHMF (\bullet).

Figure S45. Kinetic curve of the hydrogenation of HMF with $Cu_{0.12}Fe_{0.88}$ @C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (\blacksquare), BHMF (\bullet).

Figure S46. Kinetic curve of the hydrogenation of HMF with $Cu_{0.24}Fe_{0.76}$ @C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (\blacksquare), BHMF (\blacklozenge).

Figure S47. Kinetic curve of the hydrogenation of HMF with $Cu_{0.50}Fe_{0.50}$ @C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (**■**), BHMF (**●**), Acetal (**♦**).

Figure S48. Kinetic curve of the hydrogenation of HMF with $Cu_{0.75}Fe_{0.25}$ @C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (**■**), BHMF (**●**), Acetal (**♦**).

Figure S49. Kinetic curve of the hydrogenation of HMF with Cu@C NPs. Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg catalyst, 10 bar H₂, MeOH (solvent, 5 ml), 110 °C. Determined by GC using dodecane as an internal standard. HMF (\blacksquare), BHMF (\blacklozenge), Acetal (\diamondsuit).

Figure S50. Kinetic curve of the hydrogenation of HMF with Fe/Cu@C catalyst with ~25 wt% of Fe on Cu@C nanoparticles loaded by wetness impregnation. Reaction conditions: 0.5 mmol HMF, 10 mg of catalyst, 5 mL methanol as solvent, 110 °C and 10 bar of H₂. After 1 h, the catalyst was separated and the reaction was continued. HMF (\blacksquare), BHMF (\bullet), Acetal (\diamond).

Figure S51. Kinetic curve of the hydrogenation of HMF with mixture of Fe@C and Cu@C NPs (3:1). Reaction conditions: 0.5 mmol HMF, 10 mg of solid catalyst, 5 mL methanol as solvent, 110 °C and 10 bar of H₂. After 1 h, the catalyst was separated and the reaction was continued. HMF (\blacksquare), BHMF (\bullet).

Figure S52. Distributions of Cu species on Fe nanoparticles measured by STEM-EDS mapping in the Cu_{0.24}Fe_{0.76}@C sample. As can be seen in (c), Cu patches and highly dispersed Cu species can be observed.

Figure S53. Distributions of Cu species on Fe nanoparticles measured by STEM-EDS mapping in the Cu_{0.24}Fe_{0.76}@C sample. As can be seen in (c), Cu patches and highly dispersed Cu species can be observed.

Figure S54. STEM image and the corresponding EDS mapping of a representative area in the

 $Cu_{0.24}Fe_{0.76} @C \ sample.$

Catalyst	Solid Catalyst /mg	Metal /mg	HMF/ mmol	Mass ratio of HMF to solid catalyst	Temp./ °C	H₂/ MPa	Time /h	HMF Conversion /%	Selectivity to BHMF/%	Ref.
NiFe/CNT	50	5.5	4	10	110	3	18	100	96.1	1
CuZn alloy	100	100	4	5	120	7	3	>99	95	2
NiCu/SiO ₂	100	65	4	5	120	7	3	96	88	2
NiCu/SiO ₂ -ZrO ₂	100	39	4	5	120	7	3	85	85	2
NiCu/CeO ₂ /ZrO ₂	100	38	4	5	120	7	3	>99	44	2
Cu@C	20	20	2	12.5	180	5	8	70	77	3
Cu/K/Al ₂ O ₃	100	1.6	0.8	1	60	6	10	99	90	4
Cu/CoAlO _x	100	8.5	2.4	3	180	1	5	97.3	95.3	5
Ni-Al oxide	30	14	1.8	7.5	100	2	6	96	71	6
Cu/PMO	100	31	4	5	100	5	3	100	99	7
Cu/ZnO	500	270	11.9	3	140	1.5	1	97.5	94.4	8
CoAlO _x	200	60	8	5	120	4	4	89.4	83	9
Cu@POP	200	20.7	5	3.1	150	2	10	100	100	10
CuFe@C	10	10	0.5	6.3	110	1	6	94	>99	This work

Table S2. Catalytic performance of non-noble metal catalysts for hydrogenation of 5-

(hydroxymethyl)furfural (HMF) to 2,5-Bis(hydroxymethyl)furan (BHMF).

References for Table S2:

- Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. Robust and Recyclable Nonprecious Bimetallic Nanoparticles on Carbon Nanotubes for the Hydrogenation and Hydrogenolysis of 5-Hydroxymethylfurfural. *ChemCatChem* 2015, *7*, 1701-1707.
- Bottari, G.; Kumalaputri, A. J.; Krawczyk, K. K.; Feringa, B. L.; Heeres, H. J.; Barta, K. Copperzinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5hydroxymethylfurfural. *ChemSusChem* 2015, 8, 1323-1327.
- 3. Chen, B.; Li, F.; Huang, Z.; Yuan, G. Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. *Applied Catalysis B: Environmental* **2017**, *200*, 192-199.
- 4. Sun, K.; Shao, Y.; Li, Q.; Liu, Q.; Wu, W.; Wang, Y.; Hu, S.; Xiang, J.; Liu, Q.; Hu, X. Cu-based catalysts for hydrogenation of 5-hydroxymethylfurfural: Understanding of the coordination between copper and alkali/alkaline earth additives. *Molecular Catalysis* **2019**, *474*, 110407.
- Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. Interfacial Structure-Determined Reaction Pathway and Selectivity for 5-(Hydroxymethyl)furfural Hydrogenation over Cu-Based Catalysts. ACS Catalysis 2019, 10, 1353-1365.
- Perret, N.; Grigoropoulos, A.; Zanella, M.; Manning, T. D.; Claridge, J. B.; Rosseinsky, M. J. Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5-Hydroxymethylfurfural in Water. *ChemSusChem* 2016, 9, 521-531.
- 7. Kumalaputri, A. J.; Bottari, G.; Erne, P. M.; Heeres, H. J.; Barta, K. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. *ChemSusChem* **2014**, *7*, 2266-2275.
- 8. Zhu, Y.; Kong, X.; Zheng, H.; Ding, G.; Zhu, Y.; Li, Y.-W. Efficient synthesis of 2,5dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-

derived Cu catalysts as versatile catalysts. Catalysis Science & Technology 2015, 5, 4208-4217.

- Yao, S.; Wang, X.; Jiang, Y.; Wu, F.; Chen, X.; Mu, X. One-Step Conversion of Biomass-Derived 5-Hydroxymethylfurfural to 1,2,6-Hexanetriol Over Ni–Co–Al Mixed Oxide Catalysts Under Mild Conditions. ACS Sustainable Chemistry & Engineering 2013, 2, 173-180.
- Sarkar, Ch.; Paul, R.; Shit, S. Ch.; Trinh, Q. T.; Koley, P.; Rao, B. S.; Beale, A. M.; Pao, Ch. W.; Banerjee, A.; Mondal J. Navigating Copper-Atom-Pair Structural Effect inside a Porous Organic Polymer Cavity for Selective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Sustainable Chem. Eng. 2021, 9, 5, 2136–2151

Sample	Fe 2p _{3/2} BH	$E (eV)^{a-c} (\%)^d$	l	Cu 2p _{3/2} (%) ^d		
	Fe ²⁺	Fe ³⁺	Fe ⁰	$Cu^{+/}Cu^0$	Cu^{2+}	α′e
Fe@C	709.9	712.3				
	(81.8%)	(18.2%)				
Fe@C-H ₂	709.5	711.8	707.0			
	(72.2%)	(17.9%)	(9.8%)			
Cu _{0.24} Fe _{0.76} @C	710.1	712.3		932.7	934.1	1852.7
	(62.3%)	(37.7%)		(11%)	(89%)	1849.7
Cu _{0.24} Fe _{0.76} @C-H ₂	710.1	712.8	708.1	931.7	934.0	1851.3
	(51.8%)	(19.8%)	(28.3%)	(38.9%)	(61.1%)	

Table S3. BE of surface elements from X-ray photoelectron spectroscopy

a) Peng Li, E.Y. Jiang, H.L. Bai J. Phys. D: Appl. Phys.44 (2011) 075003

b) Mark C. Biesinger, Brad P. Payne, Andrew P. Grosvenor, Leo. W. M. Lau, Andrea R. Gerson, Roger St. C. Smart, Appl. Surf. Sci. 257 (2011) 2717-2730

c) Toru Yamashita, P. Hayes, Appl. Surf. Sci. 254 (2008) 2441-2449

d) In brackets the atomic percent of each component

e) Auger parameter $\alpha' = BE(Cu^+/Cu^0) + KE(Cu LMM)$; $(Cu^0) = 1851.3 \text{ eV}$; $(Cu^+) = 1849.7 \text{eV}$; $(Cu^{2+}) = 1852.7 \text{eV}$

Catalyst	Solid Catalyst /mg	Metal /mg	HMF/ mmol	Temp./ °C	H₂/ MPa	Time /h	HMF Conversion/%	Yield to BHMF/%	Selectivity to BHMF/%	Ref.
Au/Al ₂ O ₃	10	0.083	2	120	6.5	2	100	>96	>96	1
Pd/C	8	0.4	1.19	80	10	20	97	82	84.5	2
Pt/C	10	0.5	1	23	1.4	18	-	82		3
PtSn/SnO ₂ /RGO	-	-	8	70	2	0.5	>99	>99	>99	4
Ru/C	250	12.5	5.56	60	5	0.7	100	100	100	5
Ru(OH) _x /ZrO ₂	15	0.3	0.97	120	1.5	6	99	99	100	6
Ir/TiO ₂	50	2.5	1.07	50	6	3	99	95	96	7
CuFe@C	10	10	0.5	110	1	6	94	93	>99	This work

Table S4. Catalytic performance of noble metal catalysts for hydrogenation of 5-(hydroxymethyl)furfural (HMF) to 2,5-Bis(hydroxymethyl)furan (BHMF).

References

- 1. J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, *RSC Adv.* 2013, *3*, 1033–1036.
- F. Liu, M. Audemar, K. De Oliveira Vigier, J. M. Clacens, F. De Campo, F. Jérome, *Green Chem.* 2014, 16, 4110–4114.
- 3. M. Balakrishnan, E. R. Sacia, A. T. Bell, *Green Chem.* 2012, 14, 1626–1634.
- 4. J. Shi, M. Zhang, W. Du, W. Ning, Z. Hou, *Catal. Sci. Technol.* **2015**, *5*, 3108–3112.
- 5. B. Op De Beeck, M. Dusselier, J. Geboers, J. Holsbeek, E. Morré, S. Oswald, L. Giebeler, B. F. Sels, *Energy Environ. Sci.* **2015**, *8*, 230–240.
- 6. J. Han, Y. H. Kim, B. Y. Jung, S. H. Hwang, J. Jegal, J. W. Kim, Y. S. Lee, *Synlett* **2017**, *28*, 2299–2302.
- 7. H. Cai, C. Li, A. Wang, T. Zhang, *Catal. Today* **2014**, *234*, 59–65.

Figure S55. H₂-Temperature-programmed reduction (TPR) profiles of $Fe_3Cu_1@C$ and Fe@C samples.

Figure S56. Leaching test with catalyst removal during the reaction course. Reaction conditions: 0.5 mmol HMF, 10 mg of $Cu_{0.24}Fe_{0.76}$ (as the catalyst, 5 mL methanol as solvent, 110 °C, and 10 bar of H₂. After 1 h, the catalyst was removed and the reaction was continued. HMF (**■**), BHMF (**●**).

Figure S57. The catalytic performances of recycled $Cu_{0.24}Fe_{0.76}@C$ NPs in reduction of HMF to BHMF. Reaction conditions: Reaction conditions: HMF (0.5 mmol, 63 mg), 10 mg of catalyst, MeOH (solvent, 5 mL), dodecane as internal standard, 110 °C. and 10 bar of H₂. First use (\blacksquare), second use (\bullet), third use (\blacktriangle), and fourth use (\blacktriangledown).

Figure S58. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.

Figure S59. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.

Figure S60. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.

Figure S61. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.

Figure S62. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.

Figure S63. FESEM image and corresponding EDS mapping on the distribution of Fe and Cu in the used $Cu_{0.24}Fe_{0.76}$ @C sample after four catalytic runs for hydrogenation of HMF.