Electronic Supplementary Information

Efficient acceptorless dehydrogenation of hydrogen-rich N-heterocycles

photocatalyzed by Ni(OH)₂@CdSe/CdS quantum dots

Yanpeng Liu,^{ab} Tianjun Yu,*^a Yi Zeng,^{ab} Jinping Chen, ^a Guoqiang Yang, ^{bc} and Yi Li*^{ab}

^{a.} Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. E-mail: <u>tianjun_yu@mail.ipc.ac.cn</u>; <u>yili@mail.ipc.ac.cn</u>

^{b.} University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

^c Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Figure S1. GC-FID analyses for THQ and QL. Experimental conditions were as follows: [CdSe/CdS QDs] = 2.8 mg/mL; [NiCl₂] = 1.6 mM; [THQ] = 20 mM); H₂O/CH₃CN (v/v = 2/3, 5 mL); the photocatalytic reactions were performed under blue LED irradiation (λ = 420 nm, I = 50 mW/cm²).

Figure S2. Time dependent photocatalytic hydrogen release over Ni(OH)₂@CdSe/CdS QDs. Experimental conditions were as follows: [CdSe/CdS] = 2.8 mg/mL, $[NiCl_2] = 1.6 \text{ mM}$, [THQ] = 20 mM, $H_2O/CH_3CN (v/v) = 2/3$, the photocatalytic reactions were performed under blue LED irradiation ($\lambda = 420 \text{ nm}$, I = 50 mW/cm²).

Figure S3. ESI-MS of the reaction solution (Table 1 entry 1).

Figure S4. ESI-MS of the reaction solution (Table 1 entry 2).

Figure S5. ESI-MS of the reaction solution (Table 1 entry 3).

Figure S6. ESI-MS of the reaction solution (Table 1 entry 4).

Figure S7. ESI-MS of the reaction solution (Table 1 entry 5).

Figure S8. ESI-MS of the reaction solution (Table 1 entry 6).

Figure S9. ESI-MS of the reaction solution (Table 1 entry 7).

Figure S10. XPS spectrum of CdSe/CdS QDs; high-resolution XPS spectra of C 1s, Cd 3d, Se 3d, S 2p, Ni 2p.

Figure S11. XPS spectra of Ni(OH)₂@CdSe/CdS QDs; high-resolution XPS spectra of C 1s, Cd 3d, Se 3d, S 2p, Ni 2p.

Figure S12. Cyclic voltammetry curve of CdSe (0.4 mg/mL, blue) and CdSe/CdS QDs (0.3 mg/mL, magenta) in degassed water without electrolyte, scan rate: 50 mV/s.

Figure S13. a) Absorption and b) normalized emission spectra of Ni(OH)2@CdSe/CdS and

CdSe/CdS QDs ($\lambda_{ex} = 400 \text{ nm}$).

Figure S14. Cyclic voltammetry curve of THQ (1 mM) in degassed CH₃CN with 0.1 M NBu₄PF₆ as

electrolyte, scan rate: 50 mV/s.

Figure S15. GC-TCD analyses using 15 % MnCl₂@ γ -Al₂O₃ as column packing for high purity H₂ (top), high purity D₂ (middle) and the gas phase of photocatalytic dehydrogenation of THQ in D₂O/CH₃CN (bottom). Experimental conditions were as follows: [CdSe/CdS QDs] = 2.8 mg/mL; [NiCl₂] = 1.6 mM; [THQ] = 20 mM); H₂O/CH₃CN (v/v = 2/3, 5 mL); the photocatalytic reactions were performed under blue LED irradiation (λ = 420 nm, I = 50 mW/cm²).

Figure S16. Time dependent photocatalytic H₂ or D₂ release over Ni(OH)₂@CdSe/CdS QDs. Experimental conditions were as follows: [CdSe/CdS] = 2.8 mg/mL, $[NiCl_2] = 1.6 \text{ mM}$, [THQ] = 20 mM, H₂O or D₂O/CH₃CN (v/v) = 2/3, the photocatalytic reactions were performed under blue LED irradiation ($\lambda = 420 \text{ nm}$, I = 50 mW/cm²).

Figure S17. ESI-MS spectrum of adduct between the radical intermedia of THQ and DMPO.

Figure S18. TEM images of a) CdSe and b) CdSe/CdS QDs.