SUPPORTING INFORMATION

Superior Catalytic Activity of α -Ni(OH)₂ for Urea Electrolysis

Tzu–Ho Wu*, Bo–Wei Hou

Department of Chemical and Materials Engineering, National Yunlin University of

Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002,

Taiwan

*Corresponding Author: Dr. Tzu–Ho Wu (ORCID: 0000–0002–5192–8912)

Tel.: +886-5-534-2601 Ext. 4628

E-mail: <u>wutzu@yuntech.edu.tw</u>

Figure S1 XRD refinement of (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂.

Figure S2 The initial 20 CV curves of (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂ measured at the scan rate of 5 mV s⁻¹ in the potential window of 1.02–1.52 V in 1 M KOH electrolyte.

Figure S3 CV curves of (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂ recorded at the scan rate of 30–100 mV s⁻¹ in the potential window between 0.82 and 1.02 V for the evaluation of double-layer capacitance; b-value determination at 0.92 V of (c) α -Ni(OH)₂ and (d) β -Ni(OH)₂.

Catalysts	Electrolyte	Onset potential (V vs RHE) at 10 mA/cm ²	Current density (mA cm ⁻²) at 1.5 (V vs RHE)
α-Ni(OH) ₂ this work	1 M KOH +	1.40	58
	0.33 M urea		
Ni(OH) ₂	1 M KOH +	1.35	~22
nanomeshes ¹	0.33 M urea		
Ni(OH) ₂	1 M KOH +	~1.42	~50
nanoflakes ²	0.3 M urea		
Ni(OH) ₂	5 M KOH +	1.41	~82
nanoparticles ³	1 M urea		
Ni(OH) ₂	1 M KOH +	~1.41	~71
nanotubes ⁴	0.33 M urea		
Ni(OH) ₂	1 M KOH +	~1.47	~16
nanocups ⁵	0.33 M urea		
S-Ni(OH)2 ⁶	1 M KOH +	1.32	~35
	0.33 M urea		
NiCr/C ⁷	1 M KOH +	~1.47 1.32 1.34	~62
	0.33 M urea	~-	
LaNiO ₂ 8	1 M KOH +	~1 41	~23
Dur 103	0.33 M urea	1.71	
NiCo ₂ O ₄ 9	1M KOH +	1 43	~22
	0.33 M urea	1.12	
NiMoO ₄ ¹⁰	1 M KOH +	~1.37	~125
	0.50 M urea		

 Table S1 Comparison of the UOR performance of catalysts reported in the literature.

Figure S4 EIS fitting curves of (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂ from Figure 5a.

Table S2 EIS fitting results of (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂ from Figure 5a.

	$R_{s}\left(\Omega ight)$	$R_{1}\left(\Omega ight)$	$R_{2}\left(\Omega ight)$
α-Ni(OH) ₂	0.63	2.91	1.57
β-Ni(OH) ₂	0.71	2.58	2.18

Figure S5 The photograph of the (a) α -Ni(OH)₂ and (b) β -Ni(OH)₂ electrode before and after stability tests.

Notes and references

- Y. Ding, Y. Li, Y. Xue, B. Miao, S. Li, Y. Jiang, X. Liu and Y. Chen, *Nanoscale*, 2019, **11**, 1058.
- 2. W. Yang, X. Yang, C. Hou, B. Li, H. Gao, J. Lin and X. Luo, *Appl. Catal. B*, 2019, **259**, 118020.
- 3. V. Vedharathinam and G. G. Botte, *Electrochim. Acta*, 2013, **108**, 660.
- 4. R.-Y. Ji, D.-S. Chan, J.-J. Jow and M.-S. Wu, *Electrochem. Commun.*, 2013, **29**, 21.
- 5. M.-S. Wu, R.-Y. Ji and Y.-R. Zheng, *Electrochim. Acta*, 2014, **144**, 194.
- X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X. C. Zeng, C. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2016, 55, 12465.
- 7. R. K. Singh and A. Schechter, *ChemCatChem*, 2017, 9, 3374.
- 8. R. P. Forslund, J. T. Mefford, W. G. Hardin, C. T. Alexander, K. P. Johnston and K. J. Stevenson, *ACS Catal.*, 2016, **6**, 5044.
- 9. R. Ding, L. Qi, M. Jia and H. Wang, *Nanoscale*, 2014, 6, 1369.
- 10. Y. Tong, P. Chen, M. Zhang, T. Zhou, L. Zhang, W. Chu, C. Wu and Y. Xie, ACS Catalysis, 2017, 8, 1.