Structure-based redesign of the bacterial prolidase active-site pocket for efficient enhancement of methylparathion hydrolysis

(Supplementary information)

Jian Yang^{a,b,c*}, Yunzhu Xiao^{a,b,d}, Yu Liu^{a,b}, Ru Li^{a,b}, Lijuan Long^{a,b,c*}

^{*a*} CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China.

^{b.} University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

^{c.} Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, People's Republic of China.

^d Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, People's Republic of China.

*Corresponding author: Jian Yang (email: yangjian@scsio.ac.cn), Lijuan Long (email: longlj@scsio.ac.cn)

Table S1 X-ray data collection and refinement statistics

Parameters	<i>Pl</i> OPAA ^{3R}
PDB ID	7E5C
Data collection	
Beamline	SSRF-BL17U1
Space group	H32
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> , Å	182.9, 182.9, 372.0
Wavelength, Å	0.97918
Resolution, Å ^a	67.36-2.22 (2.29-2.22)
Total reflections	2,239,248
Unique reflections	111,133 (3,942)
Redundancy	20.1 (18.4)
$R_{ m sym}$ ^{a,b}	0.134 (0.079)
$R_{\rm pim}$	0.030 (0.018)
Mean (I/σ)	15.9 (34.3)
CC (1/2)	0.998 (0.998)
Completeness, %	93.9 (99.6)
Refinement	
$R_{\rm work}/R_{\rm free}^{\rm c}$	0.217/0.240
No. of protein atoms	14,271
No. of ligand atoms	8
No. of water atoms	360
Average <i>B</i> factor, $Å^2$	36.8
RMS bond lengths, Å	0.014
RMS bond angles, °	1.49
Ramachandran distribution	
Favored, %	99.08
Allowed, %	0.92
Outliers, %	0

^a Numbers in parentheses are values for the highest-resolution shell.

$$\sum_{b} \sum_{R_{sym}=hkl} \sum_{i} |I_{i} - \langle I \rangle| / \sum_{hkl} \sum_{i} |\langle I \rangle|,$$

, where I_i is the intensity for the *i*th measurement of an equivalent reflection

with indices *h*, *k*, and *l*.

 $^{c}R_{free}$ was calculated with 5% of the reflections set aside randomly throughout the refinement.

Figure S1 Catalytic activities of the wild-type enzyme and its variants on paraoxon.

Figure S2 Structural superposition of *Pl*OPAA (PDB entry 6AH8) and *Pl*OPAA^{3R} (PDB entry 7E5C). Cα atoms

of *Pl*OPAA^{3R} and wild-type superpose with an rmsd of 0.22 Å. The four mutations are indicated (green sticks,

wild-type *Pl*OPAA residues; blue sticks, *Pl*OPAA^{3R} residues).