Supporting information for:

Chemical Engineering Department, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands *h.j.heeres@rug.nl

Supporting information

Table S1. GC-MS identification of compounds in Kraft lignin oil with 20NiMoP/SiO ₂ catalyst (initial hydrogen pressure of 100 bar at RT, 2 h @ 400 °C, 1200 RPM).						
Pentane	2,3-dimethyl-phenol					
Hexane	2,4-dimethyl-phenol					
Cyclohexane	2,6-dimethyl-phenol					
2-methyl-tetrahydrofuran	3,4-dimethyl-phenol					
3-methyl-tetrahydrofuran	3,5-dimethyl-phenol					
Cis-1,2-dimethyl-cyclopentane	2-ethyl-4-methyl-phenol					
Cis-1,3-dimethyl-cyclopentane	2-ethyl-6-methyl-phenol					
Isopropyl-cyclobutane	3-ethyl-5-methyl-phenol					
Heptane	4-ethyl-3-methyl-phenol					
Methyl-cyclohexane	2-(1-methylethyl)-phenol					
Ethyl-cyclohexane	3-(1-methylethyl)-phenol					
Propyl-cyclohexane	2,4,6-trimethylphenol					
Butyl-cyclohexane	2,3,6-trimethylphenol					
1,3,5-cycloheptatriene	2,5-diethyl-phenol					
1,2-dimethyl-cyclohexane	3,5-diethyl-phenol					
1,3-dimethyl-cyclohexane	2-(1-methylpropyl)-phenol					
1,4-dimethyl-cyclohexane	4-(1-methylpropyl)-phenol					
1-ethyl-2-methyl-cyclohexane	2-allyl-4-methylphenol					
1-ethyl-3-methyl-cyclohexane	2-cyclopentyl-phenol					
1-ethyl-4-methyl-cyclohexane	4-cyclopentyl-phenol					
Ethylbenzene	Naphthalene					
Propylbenzene	1-methylnaphthalene					
p-xylene	2-methyl-naphthalene					
o-xylene	1,4-dimethyl-naphthalene					
1,3-dimethyl-benzene	2,3-dimethyl-naphthalene					
1-ethyl-3-methyl-benzene	2,7-dimethyl-naphthalene					
1-methyl-2-propyl-benzene	1,2,3,4-tetrahydro-naphthalene					
1-methyl-4-propyl-benzene	1,2,3,4-tetrahydro-5-methyl-naphthalene					
1-methyl-1-butenyl-benzene	1,2,3,4-tetrahydro-6-methyl-naphthalene					
1-methyl-2-(1-methyl-2-propenyl)-benzene	Azulene					
cis-octahydro-1H-indene	Cyclopentylcyclohexane					
2,3-dihydro-1,6-dimethyl-1H-indene	6-methyl-4-indanol					
Phenol	2,3-dihydro-1H-inden-5-ol					
2-methyl-phenol	9-methylene-9h-fluorene					
3-methyl-phenol	Anthracene					
4-methyl-phenol	9-methyl-anthracene					

This journal is © The Royal Society of Chemistry 20xx

2-ethyl-phenol	Phenanthrene
3-ethyl-phenol	1-methyl-7-(1-methylethyl)-phenanthracene
4-ethyl-phenol	2-isopropyl-10-methylphenanthrene
2-propyl-phenol	

Please do not adjust margins

Figure S1. SEM images of the catalysts

Supporting information

Figure S2. Chemisorption data for the fresh catalysts using NH₃ (alle catalysts except NiMoP-MgO-La₂O₃) and CO₂ (NiMoP-MgO-La₂O₃) *

Figure S3. TEM images of fresh catalysts

This journal is © The Royal Society of Chemistry 20xx

This journal is © The Royal Society of Chemistry 20xx

Batch #	Catalyst support	Gasphase (%)	Mass balance (%)	Oil yield (%)	Solids (%)	Water (%)	Alkylphenolics (%)	Aromatics (%)	Total monomer (%)	Cyclic + Linear alkanes (%)
4	AC	8.3	81.5	52.0	2.3	18.8	24.9	3.9	37.4	4.3
5	TiO ₂	7.8	83.0	56.5	1.1	17.7	24.0	4.1	38.1	5.3
6	TiO ₂	16.3	96.9	61.1	2.2	17.3	26.6	4.7	43.0	6.6
7	AC	8.3	94.9	61.6	2.6	22.4	31.4	4.8	48.5	5.6
8	SiO ₂ -Al ₂ O ₃	9.9	91.2	58.7	6.2	16.4	20.6	3.3	33.1	5.3
11	SiO ₂	9.6	87.6	67.4	1.7	8.9	32.5	5.9	54.7	8.1
13	SiO ₂ -Al ₂ O ₃	11.3	94.4	65.5	3.2	14.4	17.6	3.3	29.4	5.3
14	SiO ₂	9.9	93.4	68.8	2.4	12.3	28.7	5.5	48.8	8.1
15	MgO-La ₂ O ₃	10.0	93.7	57.5	13.9	12.4	21.7	4.1	36.1	5.7
16	MgO-La ₂ O ₃	9.8	90.8	51.4	15.8	13.8	19.6	4.1	33.1	5.1

Table S2. Overview of experiments with Kraft lignin

^{a)} Reaction conditions: 15 g Kraft lignin, 1.5 g catalyst, initial hydrogen pressure of 100 bar at RT, 2 h @ 400 °C, 1200 RPM.

^{b)} Percentages are in wt% on lignin intake.

Supporting information

Table S3 Overview of the gas phase	composition of all batch reactions
------------------------------------	------------------------------------

Batch #	Catalyst support	Lignin type	CO ₂	Ethylene (mol%)	Ethane (mol%)	Propylene (mol%)	Propane (mol%)	H₂ (mol%)	CH₄ (mol%)	CO (mol%)
4	AC	Kraft	7.6	0.0	1.9	0.0	1.0	58.2	31.1	0.1
5	TiO ₂	Kraft	8.5	0.0	2.2	0.0	1.0	70.3	17.8	0.2
6	TiO ₂	Kraft	15.0	0.0	4.1	0.0	2.2	29.4	48.9	0.4
7	AC	Kraft	7.5	0.0	1.9	0.0	1.1	56.7	32.8	0.1
8	SiO ₂ -Al ₂ O ₃	Kraft	8.2	0.0	2.2	0.0	1.0	60.8	27.5	0.3
11	SiO ₂	Kraft	8.3	0.0	2.5	0.0	1.1	50.4	37.7	0.1
13	SiO ₂ -Al ₂ O ₃	Kraft	9.5	0.0	2.4	0.0	1.1	57.8	28.9	0.4
14	SiO ₂	Kraft	8.1	0.0	2.0	0.0	1.0	54.8	33.9	0.1
15	MgO-La ₂ O ₃	Kraft	8.1	0.0	2.6	0.0	1.2	61.7	26.2	0.3
16	MgO-La ₂ O ₃	Kraft	7.4	0.0	2.6	0.0	1.2	62.7	25.8	0.3
17	SiO ₂	Lignoboost	8.0	0.0	1.5	0.0	0.8	51.6	38.0	0.1
18	SiO ₂	Lignoboost	9.4	0.0	2.0	0.0	1.0	63.1	24.3	0.2
20	SiO ₂	Alcell	10.7	0.0	5.5	0.1	1.6	42.8	38.6	0.7
21	SiO ₂	Alcell	10.8	0.1	4.8	0.1	1.6	44.1	38.0	0.6

a) As determined by GC-TCD.

b) Reaction conditions: 15 g lignin, 1.5 g catalyst, initial hydrogen pressure of 100 bar at RT, 2 h @ 400 °C, 1200 RPM.

able S4. Elemental analysis for lignin oil for all batch reactions									
Batch #	Catalyst support	Lignin	C (%)	H (%)	N (%)	S (%)			
4	AC	Kraft	82.52	7.65	0.90	0.30			
7	AC	Kraft	82.48	7.79	0.87	0.20			
5	TiO ₂	Kraft	83.89	7.74	0.85	0.30			
6	TiO ₂	Kraft	83.64	7.69	0.87	0.14			
8	SiO ₂ -Al ₂ O ₃	Kraft	81.96	7.22	0.89	0.22			
13	SiO ₂ -Al ₂ O ₃	Kraft	72.66	6.49	0.90	0.80			
15	MgO-La ₂ O ₃	Kraft	75.19	7.45	0.84	0.43			
16	MgO-La ₂ O ₃	Kraft	74.97	7.76	0.79	0.42			
14	SiO ₂	Kraft	83.54	7.58	0.95	0.25			
11	SiO ₂	Kraft	83.45	7.82	0.93	0.16			
17	SiO ₂	Lignoboost	83.20	7.70	0.00	0.12			
18	SiO ₂	Lignoboost	83.52	7.57	0.00	0.12			
20	SiO ₂	Alcell	75.35	7.32	0.09	0.05			
21	SiO ₂	Alcell	75.41	7.24	0.08	0.05			

Supporting information

Table S5. Elemental a	able S5. Elemental analysis for solid residues for all batch reactions									
Batch #	Catalyst support	Lignin	С	н	N	S				
4	AC	Kraft	70.78	2.06	0.81	5.86				
7	AC	Kraft	73.26	2.09	0.80	6.29				
5	TiO ₂	Kraft	6.39	0.66	0.27	5.98				
6	TiO ₂	Kraft	6.30	0.62	0.23	6.01				
8	SiO ₂ -Al ₂ O ₃	Kraft	25.48	1.82	0.81	4.67				
13	SiO ₂ -Al ₂ O ₃	Kraft	14.55	1.5	0.655	5.19				
15	MgO-La ₂ O ₃	Kraft	35.465	2.53	0.65	4.21				
16	MgO-La ₂ O ₃	Kraft	40.91	2.835	0.75	3.93				
14	SiO ₂	Kraft	5.625	0.835	0.36	6.06				
11	SiO ₂	Kraft	6.96	0.68	0.32	6.30				
17	SiO ₂	Lignoboost	4.455	0.885	0.065	7.08				
18	SiO ₂	Lignoboost	4.46	0.875	0.06	6.46				
20	SiO ₂	Alcell	13.265	1.385	0.17	0.44				
21	SiO ₂	Alcell	20.59	1.73	0.21	0.28				

Figure S4. Carbon balance for a) hydrotreatment on different supports and b) hydrotreatment for some technical lignins

Figure S5. Hydrogen consumption in NL/g of lignin during hydrotreatment of Kraft lignin with NiMoP on various supports and different lignins on NiMoP/SiO₂

Figure S6. GPC chromatogram of the three lignin oils obtained from the hydrotreatment of them using NiMoP/SiO₂ (Measured in THF, see Table 1)

Supporting information

Figure S7. X-ray diffractograms of the supported NiMoP catalysts.

Figure S8. X-ray diffractograms of fresh and spent NiMoP/SiO₂ catalyst for the hydrotreatment of Kraft lignin.

Figure S9. X-ray diffractograms of fresh and spent NiMoP/SiO₂ catalyst for the hydrotreatment of Alcell lignin

Supporting information

Figure S10. Literature comparison of relevant data for the hydrotreatment of Kraft lignin.

