Supporting Information

Highly selective electroreduction of nitrate to ammonia on Ru-doped tetragonal Co₂P monolayer with low-limiting overpotential

Jie Wu and Yang-Xin Yu*

Laboratory of Chemical Engineering Thermodynamics, Department of Chemical

Engineering, Tsinghua University, Beijing 100084, People's Republic of China

*Corresponding author.

E-mail: yangxyu@mail.tsinghua.edu.cn

Phone: +86-10-62782558

Fax: +86-10-62770304

	Table S1. Average energy difference (eV) between ferromagnetic and antiferromagnetic	gnetic states.
--	--	----------------

Materials	$E_{ m AFM1}$ - $E_{ m FM}$	$E_{ m AFM2}$ - $E_{ m FM}$	$E_{ m AFM3}$ - $E_{ m FM}$	$E_{ m AFM4}$ - $E_{ m FM}$
Co ₂ P	0.476	0.135	0.180	0.107
Ni ₂ P	0	0	0	0
Ru ₂ P	0	0	0	0
Pd ₂ P	0	0	0	0

Table S2 Optimized structures of possible products for each elementary step along the NO_3RR process on the Co_2P monolayer and their relative energies to the most stable configuration.

Intermediates	Str	uctures and relative energ	ies
NO ₃ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.17 \text{ eV}$	$\Delta E = 0.19 \text{ eV}$
NO ₂ H	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.08 \text{ eV}$	
NO ₂ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.67 \text{ eV}$	
NO ₂ H ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.73 \text{ eV}$	$\Delta E = 0.10 \text{ eV}$
NOH ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.70 \text{ eV}$	
NOH ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.31 \text{ eV}$	
NOH ₄	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.54 \text{ eV}$	 Co P H N O

Intermediates		Structures and relative energies	
NO ₃ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.42 \text{ eV}$	$\Delta E = 0.47 \text{ eV}$
NO ₂ H	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.08 \text{ eV}$	
NO ₂ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 1.54 \text{ eV}$	
NO ₂ H ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.50 \text{ eV}$	$\Delta E = 0.18 \text{ eV}$
NOH ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.64 \text{ eV}$	
NOH ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.42 \text{ eV}$	
NOH ₄	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.63 \text{ eV}$	 Ni P H N O

Table S3 Optimized structures of various possible products for each elementary step along the NO_3RR process on the Ni_2P monolayer and their relative energies referred to the most stable configuration.

Intermediates		Structures and relative energies	es
NO ₃ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.20 \text{ eV}$	$\Delta E = 0.27 \text{ eV}$
NO ₂ H	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.14 \text{ eV}$	
NO ₂ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 2.15 \text{ eV}$	
NO ₂ H ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.51 \text{ eV}$	$\Delta E = 0.07 \text{ eV}$
NOH ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.67 \text{ eV}$	
NOH ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 3.15 \text{ eV}$	
NOH ₄	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.54 \text{ eV}$	 Ru P H N O

Table S4 Optimized structures of various possible products for each elementary step along the NO_3RR process on the Ru_2P monolayer and their relative energies referred to the most stable configuration.

Intermediates	Structures and	l relative energies
NO ₃ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.78 \text{ eV}$
NO ₂ H	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.10 \text{ eV}$
NO ₂ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 1.70 \text{ eV}$
NO	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 1.21 \text{ eV}$
NOH	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 1.20 \text{ eV}$
NOH ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.64 \text{ eV}$
NOH ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.27 \text{ eV}$
NOH ₄	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.21 \text{ eV}$ $P = P = P = P = P = P = P = P = P = P =$

Table S5 Optimized structures of various possible products for each elementary step along the NO_3RR process on the Pd_2P monolayer and their relative energies referred to the most stable configuration.

Adsorption	E_{ZPE}	TS	ΔH
Species	(eV)	(eV)	(eV)
*NO ₃	0.4156	0.2243	0.0025
*NO ₃ H	0.6593	0.2179	0.0038
*NO ₂ -H ₂ O	0.9380	0.2921	0.0053
*NO ₂	0.2882	0.1569	0.0018
*NHO ₂	0.6032	0.1928	0.0034
*NHO ₂ H	0.8158	0.2507	0.0046
*NHO-H ₂ O	1.2182	0.1876	0.0064
*NHO	0.4931	0.1160	0.0027
*NH ₂ O	0.8467	0.1264	0.0044
*NH ₂ OH	1.1418	0.2075	0.0060
*NH ₃ OH	1.4310	0.1704	0.0074
*OH	0.3686	0.0691	0.0020
*H ₂ O	0.6679	0.1186	0.0036

Table S6 Calculated zero point energy (ZPE), entropy (TS) and enthalpy (Δ H) of different adsorption species on the Co₂P monolayer, where T is set to be 298.15 K and the * denotes the adsorption site.

Table S7 Calculated zero point energy (ZPE), entropy (TS) and enthalpy (Δ H) of different adsorption species on the Ni₂P monolayer, where T is set to be 298.15 K and the * denotes the adsorption site.

Adsorption	$E_{ m ZPE}$	TS	ΔH
Species	(eV)	(eV)	(eV)
*NO ₃	0.4098	0.2518	0.0025
*NO ₃ H	0.6471	0.2410	0.0038
*NO ₂ -H ₂ O	0.9227	0.3318	0.0053
*NO ₂	0.2790	0.1836	0.0018
*NHO ₂	0.5991	0.2127	0.0034
*NHO ₂ H	0.8422	0.1972	0.0046
*NHO-H ₂ O	1.1343	0.2672	0.0062
*NHO	0.4836	0.1237	0.0027
*NH ₂ O	0.8370	0.1436	0.0044
*NH ₂ OH	1.0734	0.1349	0.0056
*NH ₃ OH	1.4064	0.1961	0.0073
*OH	0.3583	0.0761	0.0019
*H ₂ O	0.6407	0.1573	0.0035

Adsorption	E_{ZPE}	TS	ΔH
Species	(eV)	(eV)	(eV)
*NO ₃	0.4384	0.1884	0.0026
*NO ₃ H	0.6518	0.2137	0.0037
*NO ₂ -H ₂ O	0.9605	0.2673	0.0054
*NO ₂	0.2771	0.1783	0.0018
*NHO ₂	0.5856	0.2266	0.0034
*NHO ₂ H	0.8594	0.1725	0.0046
*NHO-H ₂ O	1.2028	0.1896	0.0063
*NHO	0.5005	0.1024	0.0027
*NH ₂ O	0.8473	0.1310	0.0044
*NH ₂ OH	1.1080	0.1235	0.0057
*NH ₃ OH	1.4575	0.1628	0.0075
*OH	0.3839	0.0534	0.0020
*H ₂ O	0.6635	0.1438	0.0036

Table S8 Calculated zero point energy (ZPE), entropy (TS) and enthalpy (Δ H) of different adsorption species on the Ru₂P monolayer, where T is set to be 298.15 K and the * denotes the adsorption site.

Table S9 Calculated zero point energy (ZPE), entropy (TS) and enthalpy (Δ H) of different adsorption species on the Pd₂P monolayer, where T is set to be 298.15 K and the * denotes the adsorption site.

Adsorption	$E_{ m ZPE}$	TS	ΔH
Species	(eV)	(eV)	(eV)
*NO ₃	0.4074	0.2824	0.0026
*NO ₃ H	0.6989	0.2793	0.0040
*NO ₂ -H ₂ O	0.9388	0.3408	0.0054
*NO ₂	0.2722	0.1961	0.0018
*NO ₂ H	0.5480	0.2620	0.0033
*NO-H ₂ O	0.8936	0.2331	0.0049
*NO	0.1927	0.1432	0.0013
*NHO	0.4879	0.1138	0.0027
*NH ₂ O	0.8373	0.1360	0.0044
*NH ₂ OH	1.1791	0.1550	0.0061
*NH ₃ OH	1.4681	0.1544	0.0075
*OH	0.3514	0.0891	0.0019
*H ₂ O	0.6569	0.1456	0.0035

Intermediates		Structures and relative energies	
NO ₃ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.20 \text{ eV}$	$\Delta E = 0.19 \text{ eV}$
NO ₂ H	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.20 \text{ eV}$	$\Delta E = 0.14 \text{ eV}$
NO ₂ H ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 1.97 \text{ eV}$	$\Delta E = 2.51 \text{ eV}$
NO ₂ H ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.86 \text{ eV}$	$\Delta E = 0.87 \text{ eV}$
NOH ₂	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.59 \text{ eV}$	
NOH ₃	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.37 \text{ eV}$	
NOH ₄	$\Delta E = 0.00 \text{ eV}$	$\Delta E = 0.49 \text{ eV}$	Co Ru P H N O

Table S10 Optimized structures of various possible products for each elementary step along the NO_3RR process on the Ru-doped Co_2P monolayer and their relative energies referred to the most stable configuration.

_			
Adsorption	$E_{ m ZPE}$	TS	ΔH
Species	(eV)	(eV)	(eV)
*NO ₃	0.4291	0.2035	0.0026
*NO ₃ H	0.6604	0.2227	0.0038
*NO ₂ -H ₂ O	0.9494	0.2892	0.0053
*NO ₂	0.2990	0.1428	0.0018
*NHO ₂	0.6077	0.1868	0.0034
*NHO ₂ H	0.8514	0.2005	0.0047
*NHO-H ₂ O	1.1315	0.1816	0.0060
*NHO	0.4967	0.1118	0.0027
*NH ₂ O	0.8501	0.1246	0.0044
*NH ₂ OH	1.1471	0.1535	0.0060
*NH ₃ OH	1.3964	0.2366	0.0073
*OH	0.3623	0.0679	0.0020
*H ₂ O	0.6628	0.1531	0.0036

Table S11 Calculated zero point energy (ZPE), entropy (TS) and enthalpy (Δ H) of different adsorption species on the Ru-doped Co₂P monolayer, where T is set to be 298.15 K and the * denotes the adsorption site.

Fig. S1 Top and side views of five considered magnetic configurations of the tetragonal M_2P monolayer: (a) ferromagnetic (FM), (b) antiferromagnetic 1 (AFM1), (c) AFM2, (d) AFM3 and (e) AFM4.

Fig. S2 Optimized structures of various reaction intermediates along the thermodynamically favorable NO_3RR pathway on the Co_2P monolayer.

Fig. S3 Optimized structures of various reaction intermediates along the thermodynamically favorable NO_3RR pathway on the Ni_2P monolayer.

Fig. S4 Optimized structures of various reaction intermediates along the thermodynamically favorable NO_3RR pathway on the Ru_2P monolayer.

Fig. S5 Optimized structures of various reaction intermediates along the thermodynamically favorable NO_3RR pathway on the Pd_2P monolayer.

Fig. S6 Structures of the (a) Co_2P , (b) Ni_2P , (c) Ru_2P and (d) Pd_2P monolayers after AIMD simulations at 300 K for 2 ps with a time step of 1 fs.

Fig. S7 Five possible adsorption sites (Site 1, Site 2, Site 3, Site 4 and Site 5) for NO_3^- on the Ru-doped Co_2P monolayer.

Fig. S8 Optimized structures of various reaction intermediates along the thermodynamically favorable NO_3RR pathway on the Ru-doped Co_2P monolayer.