g-C₃N₄/CoNiFe-LDH Z-Scheme Heterojunction for efficient CO₂ photoreduction and MB dye photodegradation

Biao Zhu[‡], Qianxin Xu[‡], Xiaoyan Bao, Dawei Lu, Hao Yin, Yumei Qin^{*}and Xing-Can Shen^{*}

* E-mail: <u>qinyumei@gxnu.edu.cn</u>

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.

[‡]These authors contributed equally to this work.

Fig. S1 Zeta potentials of (a) $g-C_3N_4$, (b) CoNiFe-LDH, (c) CNF-3 samples dispersed in water.

Fig. S2 TGA curves of the synthesized samples.

Fig. S3 (a) N_2 adsorption/desorption isotherms and (b) the corresponding pore size distribution of different samples.

Material	Reaction conditions	Light source	Product	CO Yied/ µmol g ⁻¹ h ⁻¹	Ref.
CoNiFe-LDH/g- C ₃ N ₄	CO ₂ and water vapor	300 W Xe	СО	42.05	This work
CuS atomic layer	CO ₂ and water vapor	IR light	СО	14.5	1
Cu/C ₃ N ₄ -6	CO ₂ and 0.1 M KHCO ₃	350W Xe lamp	СО	9.9	2
P/Bi-BOB-0.25	CO ₂ and water vapor	300 W Xe lamp	СО	3.14	3
BON-Br	CO ₂ and water vapor	300 W Xe lamp	СО	8.12	4
CoZnAl-LDH/ rGO/g-C ₃ N ₄	CO ₂ and water vapor	300 W Xe lamp	СО	10.11	5
Ti ₃ C ₂ /g-C ₃ N ₄	CO ₂ and water vapor	300 W Xe lamp (λ≥420nm)	СО	2.24	6
NG/CdS	CO ₂ and water vapor	300 W Xe lamp (λ≥420nm)	СО	2.59	7
CdS/CdWO ₄	CO ₂ and water vapor	300 W Xe lamp	СО	1.39	8
CN-PA12	CO ₂ and water vapor	$(100 \text{ mW} \cdot \text{cm}^{-2})$	CO and CH ₄	5.42	9
K-CN-7	CO ₂ and water vapor	Visible-light (λ>420 nm)	СО	8.7	10
Pt@45CeO ₂ / 3DCN	CO ₂ and 0.1 M NaOH	UV light	CO and CH ₄	4.69	11
Cu ₂ O-loaded Zn-Cr-LDH	CO ₂ and water vapor	200W Hg-Xe	СО	1.3	12

Table S1. Comparative performance of inorganic heterostructures for the

photocatalytic reduction of CO₂

Fig. S4 (a) XRD patterns and (b) FT-IR of CNF-3 photocatalyst before and after photocatalytic reactions.

Fig. S5 CO_2 adsorption-desorption isotherms of the CNF-3, pure C_3N_4 and LDH.

•

Fig. S6 The time-dependent UV-vis absorption spectra of MB with the use of different samples: (a) no catalyst; (b) H_2O_2 ; (c) H_2O_2 +LDH; (d) H_2O_2 +g-C₃N₄; (e) H_2O_2 +CNF-1; (f) H_2O_2 +CNF-2; (g) H_2O_2 + CNF-4.

Reference

1. Li, X.; Liang, L.; Sun, Y.; Xu, J.; Jiao, X.; Xu, X.; Ju, H.; Pan, Y.; Zhu, J.; Xie, Y., Ultrathin Conductor Enabling Efficient IR Light CO2 Reduction. *J. Am. Chem. Soc.* **2019**, *141* (1), 423-430.

2. Shi, G.; Yang, L.; Liu, Z.; Chen, X.; Zhou, J.; Yu, Y., Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. *Appl. Surf. Sci.* **2018**, *427*, 1165-1173.

3. Zhu, J.-y.; Li, Y.-p.; Wang, X.-j.; Zhao, J.; Wu, Y.-s.; Li, F.-t., Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO2 Reduction. *ACS Sustainable Chem. Eng.* **2019**, *7* (17), 14953-14961.

4. Hao, L.; Kang, L.; Huang, H.; Ye, L.; Han, K.; Yang, S.; Yu, H.; Batmunkh, M.; Zhang, Y.; Ma, T., Surface-Halogenation-Induced Atomic-Site Activation and Local Charge Separation for Superb CO2 Photoreduction. *Adv. Mater.* **2019**, *31* (25), 1900546.

5. Yang, Y.; Wu, J.; Xiao, T.; Tang, Z.; Shen, J.; Li, H.; Zhou, Y.; Zou, Z., Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. *Appl. Catal. B Environ.* **2019**, *255*, 117771.

6. Tang, Q.; Sun, Z.; Deng, S.; Wang, H.; Wu, Z., Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. *J. Colloid Interface Sci.* **2020**, *564*, 406-417.

7. Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J., In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction. *Adv. Mater.* **2019**, *31* (42), 1902868.

8. Li, Y.-Y.; Wei, Z.-H.; Fan, J.-B.; Li, Z.-J.; Yao, H.-C., Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS. *Appl. Surf. Sci.* **2019**, *483*, 442-452.

9. Wang, Z.; Lee, H.; Chen, J.; Wu, M.; Leung, D. Y. C.; Grimes, C. A.; Lu, Z.; Xu, Z.; Feng, S.-P., Synergistic effects of Pd–Ag bimetals and g-C3N4 photocatalysts for selective and efficient conversion of gaseous CO2. *J. Power Sources* **2020**, *466*, 228306.

10. Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X., Potassium-Doped g-C3N4 Achieving Efficient Visible-Light-Driven CO2 Reduction. *ACS Sustainable Chem. Eng.* **2020**, *8* (22), 8214-8222.

11. Zhao, X.; Guan, J.; Li, J.; Li, X.; Wang, H.; Huo, P.; Yan, Y., CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. *Appl. Surf. Sci.* **2021**, *537*, 147891.

12. Jiang, H.; Katsumata, K.-i.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A., Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. *Appl. Catal. B Environ.* **2018**, *224*, 783-790.