Supporting information

Rational design of $Ni_xCo_{1-x}P@C$ cocatalyst for enhanced overall water splitting based on g-C₃N₄ photocatalyst — the synergy of carbon-shell modification and bimetal modulation

Tingfeng Zhang#, Xuefang Lan#, Lili Wang, Jinsheng shi, kefeng Xiao*

Qingdao Agricultural University, Department of Chemistry and Pharmacy, China * Corresponding author at: Qingdao Agricultural University, Department of Chemistry and Pharmacy, Chengyang District, Qingdao, China E-mail address: jsshiqn@aliyun.com

 $\begin{array}{c} \bullet \text{NiCo}_2\text{O}_4 \text{ (PDF20-0781)} \\ \bullet \text{NiCoP} \text{ (PDF71-2336)} \\ \bullet \text{Ni}_3\text{Co}_7\text{O}@\text{C} \\ \bullet \text{Ni}_3\text{Co}_7\text{O}@\text{C} \\ \hline \text{Ni}_3\text{Co}_7\text{P}@\text{C} \\ 20 & 40 & 60 & 80 \\ 2\theta(^\circ) \end{array}$

Fig. S1 XRD patterns of Ni₃Co₇@C after oxidation and phosphidation

Table S1 ICP results of co-catalyst and catalyst

Samples	Co(wt%)	Ni(wt%)	NDCS	P(wt%)	S(wt%)	Co/Ni
5%Ni ₃ Co ₇ P/CN	1.06	0.48%		1.57	0.071	2.2
Ni ₇ Co ₃	20.55	42.81%	36.64			0.48
Ni ₅ Co ₅	35.91	32.65%	31.44			1.1
Ni ₃ Co ₇	45.12	19.61%	35.27			2.3

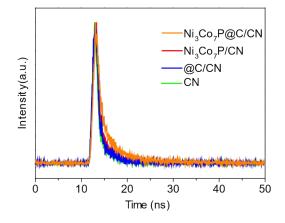


Fig. S2 Transient PL spectra of $g-C_3N_4$, @C/CN, Ni₃Co₇-P/CN and Ni₃Co₇-P@C/CN The transient PL spectra show increasing fluorescent lifetime in the order $g-C_3N_4 < @C/CN < Ni_3Co_7-P/CN < Ni_3Co_7-P@C/CN$, indicating the increasing carrier separation and transfer efficiency in the same order., which is consistent with the steady-state PL results.