Chitosan-Lignin Carbon Framework Encapsulated Cu Catalyst Facilitates Base-free Hydrogen Evolution from Methanol/Water

Yunhong Pi,^{‡*} Xiuting Wu,[‡] Zefeng Zheng, Liang Ma, Tiejun Wang*

1 School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.

2 Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.

Fig. S1 SEM image of CS-LN composite(a) and Cu@CS-LN(b); (c) TEM of Cu@CS-LN; (d) Pore size distribution of CS-LN and Cu@CS-LN; (e) the specific surface area, average pore volume, and average pore size of the CS-LN support and Cu@CS-LN.

Fig. S2 The hydrogen production rate of (a) various calcination temperatures (250-500°C) with 5 wt% NaOH; (b) various molar ratio of MeOH to H₂O; (c) various dosage of Cu@CS-LN catalyst. Reaction conditions: 210 °C, 2 MPa, N₂.

Table S1. The generation of H₂ via aqueous phase methanol reforming over M@CS-LN (M=Ni, Fe, Co) catalysts ^{*a*}

Entry	Catalyst	Temp (°C)	n _{CH3OH} :n _{H2O}	$\mu mol_{H2} g_{Cu}^{-1} h^{-1b}$	Sel (CO)%
1	Cu@CS-LN	210	1:3	2.5x10 ⁵	0.22
2	Ni@CS-LN	210	1:3	3.9x10 ⁴	6.6
3	Fe@CS-LN	210	1:3	6.4.x10 ⁴	3.9
4	Co@CS-LN	210	1:3	$7.4 x 10^4$	2.1

^{*a*}Reaction conditions: $n(MeOH)/n(H_2O) = 1:3$, 10 mL of total volume of liquid, 30 mg of activated catalysts, no base, 2 MPa of N₂. ^{*b*}Catalytic performance is calculated as the hydrogen production per gram of Cu-catalyst per hour. The unit is $\mu mol_{H^2} g_{Cu}^{-1} h^{-1}$.

Table S2. Catalytic hydrogen evolution activity of aqueous MeOH reforming^a

*Corresponding author. E-mail : piyunhong@163.com (Y. Pi) and tjwang@gdut.edu.cn (T. Wang)

Entry	Catalyst	Temp (°C)	$\mu mol_{H2} g_{Cu}^{-1} h^{-1b}$	Sel (CO)%
1	Cu@CS-LN	210	2.5x10 ⁵	0.22
2	CS-LN	210	1082	6.2
3		210		
4	Cu/LN	210	1131	3.9
5	Cu@CS	210	1.1x10 ⁵	0.21
6 ^c	Cu@CS-LN	210	898	1.1
7 ^d	Cu@CS-LN	210	1.8x10 ⁵	0.002

^{*a*}Reaction conditions: $n(MeOH)/n(H_2O) = 1:3$, 10 mL of total volume of liquid, 30 mg of activated catalysts, no base, 2 MPa of N₂. ^{*b*}Catalytic performance is calculated as the hydrogen production per gram of Cu-catalyst per hour. The unit is $\mu mol_{H_2} g_{Cu}^{-1} h^{-1}$. ^{*c*} Reaction conducted in the air atmosphere. ^{*d*} Cu@CS-LN precursor was calcined in N₂ at 500 °C for 2h.

Fig. S3 Cu $L_3M_{45}M_{45}$ Anger spectra of Cu@CS-LN and Cu@CS.

Catalant	Kinetic energy of Cu LMM (eV)			Surface Cu ^I /Cu ⁰	%Cu ^{II}
Catalyst -	Cu ⁰	Cu ^I	Cu ^{II}	atomic ratio(%)	By fitting
Cu@CS	918.6	916.7	917.7	196.7	37.0
Cu@CS-LN	918.6	916.4	917.7	78.3	3.4
Cu@CS-LN (A.R.)	918.5	916.5	917.7	68.4	1.0

Table S3. The kinetic energy of Cu LMM peak in XPS and surface Cu^I/Cu⁰ ratio of the sets of Cu-containing catalysts. %Cu^{II} is the percentage of Cu^{II}

Fig. S4 The XRD patterns of Cu@CS-LN catalysts after reaction (A.R) under N₂/air atmosphere. Reaction conditions: $n(MeOH)/n(H_2O) = 1:3$, 10 mL of total volume of liquid, 30 mg of activated Cu@CS-LN catalysts, no base, 210 °C, 2 MPa of N₂/air.

Fig. S5 (a) The TEM image after reactions; (b) XRD patterns before and after reaction over Cu@CS-LN catalyst in the hydrogen production of aqueous MeOH reforming under optimal reaction.

Entry	Catalyst	Contact angle(°)	$\mu mol_{H2} g_{Cu}^{-1} h^{-1a}$
1	Cu@CS-LN	55.3±2.4	2.5x10 ⁵
2	CS-LN	68.2±1.2	1082
3	CS	117.1±4.2	272

Table S4. Correlation between the reactivity of APRM and the contact angle of catalysts

Reaction conditions: $n(MeOH)/n(H_2O) = 1:3$, 10 mL of total volume of liquid, 30 mg of activated catalysts, no base, 210 °C, 2 MPa of N₂. *a*Catalytic performance is calculated as the hydrogen production per gram of Cu-catalyst per hour. The unit is $\mu mol_{H_2} g_{Cu}^{-1} h^{-1}$. *b*The hydrogen production rate decreases remarkably with rise of contact angle, verifying that improving catalyst wettability could promote activity for APR of methanol.

Fig. S6 Temperature-programmed desorption (TPD) experiment (a) with methanol over CS, CS-LN, and Cu@CS-LN (b) without methanol over CS and CS-LN.

Fig. S7 The TEM image of Cu/CS-LN (a) before reaction (with particle size of 11.2±1.7nm) and (b) after reaction (with particle size of 20.6±1.2nm).

Fig S8. EPR spectra of CS-LN and Cu@CS-LN before and after reaction. The spectra of Cu@CS-LN almost overlapped with that of pure carbon framework CS-LN, ruling out the existence of Cu^{II} in the copper species.