Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Role of EFAI species and proximity between Brønsted and metal sites in hydrogenation on bifunctional catalysts

Nuno Batalha^{a,*}, Jean-Dominique Comparot^a, Anthony Le Valant^a, Ludovic Pinard^{a,*}

^a Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France

*corresponding author : nuno.rocha-batalha@ircelyon.univ-lyon1.fr; ludovic.pinard@univ-poitiers.fr

Figure S1. Schematic representation of the PtA|HBEA sample analysis.

Figure S2. TEM micrographs of 0.5PtHBEA (A) and 1PtHBEA (B) catalysts.

Figure S3. SEM micrographs of HBEA.

	Brønsted acidity – [PyH ⁺] ^a	Lewis acidity – [PyL] ^b
	(µmol.g⁻¹)	(µmol.g⁻¹)
HBEA (CP-814E - Zeolyst) ^c	448	208
$AI_2O_3^{d}$	-	172
Al ₂ O ₃ + HBEA (50-50)	169 (224) ^e	145 (190) ^e

Table S1. Impact of the mixture between $\gamma\text{-}Al_2O_3$ and HBEA on acid properties of PtA+HBEA samples.

^a number of protonic sites able to retain pyridine [PyH⁺] at 220 °C.

^b Lewis sites able to retain pyridine [PyL] at 220 °C.

^c BEA zeolite from Zeolyst (ref: CP-814E) was used as a replacement for the sample used in the main manuscript due to unavailability of the original HBEA zeolite.

^d The Al_2O_3 sample presented in this table is a new batch made from the same boehmite material as the one presented in the main manuscript.

^e Values in brackets correspond to theoretical site density based on the relative proportions of Al_2O_3 and HBEA in the sample.

Figure S4. Pyridinium (PyH⁺ - 1545 cm⁻¹) and pyridine coordinated on Lewis sites (PyL – 1455 cm⁻¹) bands evolution time with a hydrogen pressure of 6 mbar in the infrared cell for 1PtHBEA saturated with pyridine at 220 °C

Figure S5. C-H characteristic bands (3100 – 2700 cm⁻¹) of the gas phase as function of hydrogen pressure during the hydrogenation of adsorbed pyridine at 220° C.

Figure S6. Hydroxyl characteristic bands ($3500 - 3850 \text{ cm}^{-1}$) of $PtAl_2O_3$ catalyst as function of hydrogen pressure during the hydrogenation of adsorbed pyridine at 220°C. In the square is highlighted the variation of the band at 3471 cm-1 relative to the reference spectrum at $P(H_2) = 0$ mbar.

Figure S7. Left) Evolution of the 1700 cm⁻¹ band characteristic of Al-H bond. Right) Deconvolution of the IR spectrum of HBEA adsorbed with pyridine under 9 mbar of H_2 .

Figure S8. Equilibrium conversion the hydrogenation of pyridine adsorbed on 0.5PtHBEA (Py=9.6 μ mol) as a function of hydrogen pressure. The reaction was considered to occur in the gas phase at 220 °C, and system volume, i.e., IR cell volume is 544.4 mL.