Supporting Information

Mechanistic Investigation of a Visible Light Mediated Dehalogenation/Cyclisation Reaction using Iron(III), Iridium(III) and Ruthenium(II) Photosensitizers

Akin Aydogan,¹ Rachel E. Bangle,² Simon De Kreijger,¹ John C. Dickenson,² Michael L. Singleton,¹ Emilie Cauët,³ Alejandro Cadranel,⁴ Gerald J. Meyer,² Benjamin Elias¹ Renato N. Sampaio, ^{2,5,*} and Ludovic Troian-Gautier^{1,*}

¹ Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des
Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis
Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
² Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina, 27599-3290, United States
³ Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (CP 160/09),
Université libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels, Belgium
⁴ Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials
(ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058
Erlangen, Germany
⁵ Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

Table of contents

Excited-State Quenching Experiments2Dehalogenation Yields Using Green Light Irradiation6NMR Characterizations7

*Correspondence to: ludovic.troian.@uclouvain.be, renatons@email.unc.edu

Excited-State Quenching Experiments

Figure S1: Excited-state quenching of $[Fe(phtmeimb)_2]^{+*}$ by triethylamine in argon-purged CH₃CN (a), CH₂Cl₂ (b) and DMF (c). The corresponding Stern-Volmer plots are gathered in panel (d).

Figure S2: Excited-state quenching of $[Ir(ppy)_2(bpy)]^{+*}$ by triethylamine in argon-purged CH₃CN (a), CH₂Cl₂ (b) and DMF (c). The corresponding Stern-Volmer plots are gathered in panel (d).

Figure S3: Excited-state quenching of $[Ru(bpy)_3]^{2+*}$ by triethylamine in argon-purged CH₃CN (a), CH₂Cl₂ (b) and DMF (c). The corresponding Stern-Volmer plots are gathered in panel (d).

Figure S4. Excited-state quenching of $[Ir(ppy)_3]^*$ by triethylamine in CH₃CN. The corresponding Stern-Volmer plot is shown in the inset from which $k_q = 7.45 \text{ x} 10^8 \text{ M}^{-1} \text{s}^{-1}$ was determined.

Figure S5. Evolution of the PL spectra of $[Ir(ppy)_2(bpy)]^+$ in the presence on 1M TEA (black) and following blue light illumination for the indicated period of time (blue). Experiments were performed in argon purged acetonitrile at room temperature.

Dehalogenation Yields Using Green Light Irradiation

Table S1. Yields of compounds 1-4 obtained with green light irradiation

	CH ₂ Cl ₂	CH ₃ CN	DMF
	(1/2/3/4) (%)	(1/2/3/4) (%)	(1/2/3/4) (%)
$[Ru(bpy)_3]^{2+}$	0/0/48/25	0/0/47/9	0/0/55/23
<pre>[Ir(ppy)₂(bpy)]⁺</pre>	0/0/43/18	0/0/49/16	0/0/42/6
[Fe(phtmeimb) ₂] ⁺	0/29/29/14	72/4/15/2	75/4/1/4

Conditions : PS (1 mol%), TEA (3.5 eq., 0.7 mmol), solvent (2 mL), green light, under inert atmosphere and under irradiation for 24h.

NMR Characterizations

Figure S6: ¹H NMR spectrum of compound 1 recorded in CDCl₃ at 500 MHz and at 298 K.

Figure S8: ¹³C DEPT 135 NMR spectrum of compound 1 recorded in CDCl₃ at 75 MHz and at 298 K.

Figure S9: ¹H NMR spectrum of compound 2 recorded in CDCl₃ at 300 MHz and at 298 K.

Figure S10: ¹³C NMR spectrum of compound 2 recorded in CDCl₃ at 75 MHz and at 298 K.

Figure S11: ¹H NMR spectrum of compound **3** recorded in CDCl₃ at 500 MHz and at 298 K.

Figure S12: ¹H COSY NMR spectrum of compound **3** recorded in CDCl₃ at 500 MHz and at 298 K.

Figure S14: ¹³C DEPT 135 NMR spectrum of compound **3** recorded in CDCl₃ at 75 MHz and at 298 K.

Figure S15: ¹H NMR spectrum of compound 4 recorded in CDCl₃ at 500 MHz and at 298 K.

Figure S16: ¹H COSY NMR spectrum of compound 4 recorded in CDCl₃ at 500 MHz and at 298 K.

Figure S17: ¹³C NMR spectrum of compound 4 recorded in CDCl₃ at 75 MHz and at 298 K.

Figure S18: ¹³C DEPT 135 NMR spectrum of compound 4 recorded in CDCl₃ at 75 MHz and at 298 K.