Supporting Information

Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide

Cailian Zhou[#], Jiao Feng[#], Jing Wang, Ning Hao, Xin Wang^{*}, Kequan Chen

State Key Laboratory of Materials-Oriented Chemical Engineering, College of

Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing

211816, People's Republic of China

*Corresponding author: Xin Wang

E-mail address: xinwang1988@njtech.edu.cn.

#These authors contributed equally to this work.

Strains or plasmids	Description	Source
Strains		
E. coli BL21(DE3)	Used as host strain	Invitrogen
E.coli BL21-Pynp	E. coli BL21(DE3) harboring plasmid pET28a-pynp	This study
E.coli BL21-Pnp	E. coli BL21(DE3) harboring plasmid pET28a-pnp	This study
E.coli BL21-Nadr	E. coli BL21(DE3) harboring plasmid pET28a-nadr	This study
E.coli BL21-Apt	E. coli BL21(DE3) harboring plasmid pET28a-apt	This study
E.coli BL21-AMPase	E. coli BL21(DE3) harboring plasmid pET28a-amn	This study
E.coli BL21-Rppk	E. coli BL21(DE3) harboring plasmid pET28a-prs	This study
E.coli BL21-Nampt-HD	E. coli BL21(DE3) harboring plasmid pET28a-nampt-HD	This study
E.coli BL21-Nampt-HS	E. coli BL21(DE3) harboring plasmid pET28a-nampt-HS	This study
E.coli BL21-Nampt-MM	E. coli BL21(DE3) harboring plasmid pET28a-nampt-MM	This study
E.coli BL21-Nampt-LS	E. coli BL21(DE3) harboring plasmid pET28a-nampt-LS	This study
<i>E.coli</i> BL21-Nampt-CP	E. coli BL21(DE3) harboring plasmid pET28a-nampt-CP	This study
<i>E.coli</i> BL21-Nampt-SS	<i>E. coli</i> BL21(DE3) harboring plasmid pET28a-nampt-SS	This study
E.coli BL21-Nampt-MA	E. coli BL21(DE3) harboring plasmid pET28a-nampt-MA	This study
E.coli BL21-Nampt-EC	E. coli BL21(DE3) harboring plasmid pET28a-nampt-EC	This study
E.coli BL21-Nampt-XL	E. coli BL21(DE3) harboring plasmid pET28a-nampt-XL	This study
E.coli BL21-Ppk2	<i>E. coli</i> BL21(DE3) harboring plasmid pET28a- <i>ppk2</i>	This study
Plasmids		
pET28a	expression vector, KanR, P _{T7} , f1 ori	Invitrogen
pET28a <i>-pynp</i>	pET28a containing pynp from Bacillus licheniformis	This study
pET28a-deoD	pET28a containing deoD from Klebsiella aerogenes	This study
pET28a- <i>amn</i>	pET28a containing amn from E. coli	This study
pET28a-prs	pET28a containing prs from E. coli	This study
pET28a-nadr	pET28a containing nadr from E. coli	This study
pET28a-apt	pET28a containing apt from E. coli	This study
pET28a-nampt-HD	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from <i>Haemophilus ducreyi</i>	-
pET28a-nampt-HS	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from <i>Homo sapiens</i>	2
pET28a-nampt-MM	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from <i>Mus musculus</i>	5
pET28a-nampt-LS	pET28a containing the synthetic codon-optimized coding	This study
1 · · · · · · · · · · · · · · · · ·	sequence of NAMPT from Luteibacter sp	5

Table S1 Strains and plasmids used in this work

nET28a-namnt-CP	pET28a containing the synthetic codon-optimized coding	This study
pE1200 humpt of	sequence of NAMPT from Chitinophaga pinensis	2
pET28a-nampt-SS	pET28a containing the synthetic codon-optimized coding	This study
1 1	sequence of NAMPT from Sphingopyxis sp. C-1	
pET28a-nampt-MA	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from Macaca mulatta	
pET28a-nampt-EC	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from <i>Equus caballus</i>	
pET28a-nampt-XL	pET28a containing the synthetic codon-optimized coding	This study
	sequence of NAMPT from Xenopus laevis	
pET28a- <i>ppk2</i>	pET28a containing synthetic <i>ppk2</i>	This study

Name	Enzyme	EC number	NCBI accession number	Gene	Source
Pynp	pyrimidine-nucleoside phosphorylase	2.4.2.2	QBR18245.1	pynp	Bacillus licheniformis
Pnp	purine nucleoside phosphorylase	2.4.2.1	VDZ69745.1	deoD	Klebsiella aerogenes
NADR	ribosylnicotinamide kinase	2.7.1.22	NP_418807.4	nadR	Escherichia coli
AMPase	AMP nucleosidase	3.2.2.4	NP_416489.1	amn	Escherichia coli
RPPK	ribose-phosphate diphosphokinase	2.7.6.1	NP_415725.1	prs	Escherichia coli
Apt	adenine phosphoribosyltransfe rase	2.4.2.7	NP_415002.1	apt	Escherichia coli
Nampt- HD	nicotinamide phosphoribosyl transferase	2.4.2.12	WP_010945301.1	putative <i>nadV</i>	Haemophilus ducreyi
Nampt- HS	nicotinamide phosphoribosyl transferase	2.4.2.12	NP_005737.1	nampt	Homo sapiens
Nampt- MM	nicotinamide phosphoribosyl transferase	2.4.2.12	NP_067499.2	nampt	Mus musculus
Nampt- LS	nicotinamide phosphoribosyl transferase	2.4.2.12	SFW68293.1	nampt	Luteibacter sp.
Nampt- CP	nicotinamide phosphoribosyl transferase	2.4.2.12	WP_012788281.1	nampt	Chitinophaga pinensis
Nampt-SS	nicotinamide phosphoribosyl transferase	2.4.2.12	WP_062182430.1	nampt	Sphingopyxis sp. C-1
Nampt- MA	nicotinamide phosphoribosyl transferase	2.4.2.12	XP_014990151.1	nampt	Macaca mulatta
Nampt- EC	nicotinamide phosphoribosyl transferase	2.4.2.12	XP_023494644.1	nampt	Equus caballus
Nampt- XL	nicotinamide phosphoribosyl transferase	2.4.2.12	NP_001089988.1	nampt	Xenopus laevis
PPK2	polyphosphate kinase 2	2.7.4.1	RVP31066.1	ppk2	Sinorhizobium meliloti

Table S2 Summary of enzymes used in this work

Name	Primer sequence (5'-3')
Pynp F	CATG <u>CCATGG</u> aacaccaccaccaccacCATGAGAATGGTTGATATCATCACA
Pynp R	CGC <u>GGATCC</u> CTATTCCGTAATCACCGTATGCACAA
Pnp F	CATG <u>CCATGG</u> aacaccaccaccaccaccATGGCCACCCCACACATTAA
Pnp R	CCC <u>AAGCTT</u> TTACTCTTTATCACCCAGCAGTACGG
NADR F	$CATG \underline{CCATGG} a a caccaccaccaccaccaccaCATGTCGTCATTTGATTACCTGAAAACTG$
NADR R	C
	CCG <u>GAATTC</u> TTATCTCTGCTCCCCATCATCT
AMPase F	CCG <u>GAATTC</u> TTATCTCTGCTCCCCCATCATCT CATG <u>CCATGG</u> aacaccaccaccaccaccacCATGAATAATAAGGGCTCCGGTCTG
AMPase F AMPase R	CCGGAATTCTTATCTCTGCTCCCCCATCATCT CATGCCATGGaacaccaccaccaccaccaccaccacCATGAATAATAAGGGCTCCGGTCTG CCCAAGCTTTTATCGGAACGGCGGCTC
AMPase F AMPase R RPPK F	CCGGAATTCTTATCTCTGCTCCCCATCATCT CATGCCATGGaacaccaccaccaccaccaccacCATGAATAATAAGGGCTCCGGTCTG CCCAAGCTTTTATCGGAACGGCGGCTC CATGCCATGGaacaccaccaccaccaccaccacGTGCCTGATATGAAGCTTTTGCT
AMPase F AMPase R RPPK F RPPK R	CCGGAATTCTTATCTCTGCTCCCCATCATCT CATGCCATGGaacaccaccaccaccaccaccacCATGAATAATAAGGGCTCCGGTCTG CCCAAGCTTTTATCGGAACGGCGGCTC CATGCCATGGaacaccaccaccaccaccaccacGTGCCTGATATGAAGCTTTTTGCT CCGGAATTCTTAGTGTTCGAACATGGCAGAGAT
AMPase F AMPase R RPPK F RPPK R Apt F	CCGGAATTCTTATCTCTGCTCCCCATCATCTCATGCCATGGaacaccaccaccaccaccacCATGAATAATAAGGGCTCCGGTCTGCCCAAGCTTTTATCGGAACGGCGGCTCCATGCCATGGaacaccaccaccaccaccacGTGCCTGATATGAAGCTTTTTGCTCCGGAATTCTTAGTGTTCGAACATGGCAGAGATCCCATGGaacaccaccaccaccacCATGACCGCGACTGCACAG

Table S3 Primers used in this work

Underline indicates the cleavage sites of restriction enzyme and lowercase letters indicate the His Tag

sequence.

Figure S1 MS result of the reaction product.

Figure S2 Amino-acid sequence homology analysis for nine different NAMPT.

Figure S3 Effect of Mg²⁺ and ATP on enzyme activity of AMPase(A) and NAMPT(B). CK represents the control group.

Supplementary Figure S4 The consumption of ATP, AMP, and NAM, and the generation of by-products ADP and adenine under the condition of AMPase/RPPK/ NAMPT ratio of 1:6:10.

Supplementary Figure S5 The generation of by-products of adenine, R-5-P and ADP with the four-enzyme cascade catalysis system in vitro.