Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting information

Fig. S1. XRD spectra of Cu based catalyst with different topology structure.

Fig. S2. H₂ signal (a), CO signal (b), CH₄ signal (c) of Cu-ZSM-5 catalyst at different adsorption conditions.

Fig. S3. MS signals of Cu-ZSM-5 catalyst at different reaction conditions.

Fig. S4. In situ DRIFTS spectra of (a) H_2 , (b) CO, (c) CH_4 , (d) $CO + H_2$, (e) $CH_4 + H_2$, (f) $CH_4 + CO$, and (g) $CH_4 + CO + H_2$ reacted with pre-adsorbed NO + O₂ on Cu-ZSM-5 catalyst at 250 °C as a function of time.

Fig. S5. In situ DRIFTS spectra of (a) NO + H_2 + O_2 , (b) NO + CO + O_2 , (c) NO + CH_4 + O_2 , (d) NO + CO + H_2 + O_2 , (e) NO + CH_4 + H_2 + O_2 , (f) NO + CH_4 + CO + O_2 and (g) NO + CH_4 + CO + H_2 + O_2 on Cu-ZSM-5 catalyst at 250 °C as a function of time.

Fig. S6. In situ DRIFTS spectra of (a) NO + CO + H_2 + O_2 , (b) stop CO + H_2 , (c) NO + CH₄ + H_2 + O_2 , (d) stop CH₄ + H_2 , (e) NO + CH₄ + CO + O_2 , (f) stop CH₄ + CO (e) NO + CH₄ + CO + H_2 + O_2 and (f) stop CH₄ + CO + H_2 on Cu-ZSM-5 catalyst at 250 °C as a function of time.

Fig. S7. In situ DRIFTS spectra of (a) stop H₂, (b) stop CO, (c) stop CH₄, (d) stop CO + H₂, (e) stop CH₄ + H₂, (f) stop CH₄ + CO and (g) stop CH₄ + CO + H₂ on Cu-ZSM-5 catalyst at 250 °C as a function of time.

Fig. S8. In situ DRIFTS spectra of (a) NO + H_2 + O_2 , (b) stop H_2 , (c) NO + CO + O_2 , (d) stop CO, (e) NO + CH₄ + O_2 and (f) stop CH₄ on Cu-ZSM-5 catalyst at 250 °C as a function of time.

Fig. S9. In situ DRIFTS spectra on Cu-ZSM-5 catalyst at 250 °C under different reaction conditions.

Fig. S10. In situ DRIFTS spectra on Cu-ZSM-5 catalyst at 350 °C under different reaction conditions.

Wavenumber (cm ⁻¹)	Species and mode	Ref.
1143	Adsorbed NO	4
1255	Bridged nitrates	4
1439	Nitrites	5
2155	NO ⁺ species	6
964	Bidentate carbonates	7
1372	Monodentate carbonate	8
2109/2155	$Cu^+(CO)$ carbonyl	9, 10
2195	$Cu^{+}(CO)_2$ carbonyl	11
2346/2360	Adsorbed CO ₂	12
1285	Coordinated NH ₃	13
3015	Adsorbed CH ₄	14
3580	Si-OH-A1	15
3650	Cu-OH	15

Table S1. Observed species in the reaction process as identified by IR.

Reaction type	Reaction steps	No.
	$NO + * \rightarrow NO^*$	R1
	$O_2 + * \rightarrow O_2^*$	R2
	$NO^* + * \rightarrow N^* + O^*$	R3
NO adsorption	$O_2^* + * \rightarrow O^* + O^*$	R4
and nitrate	$N^{*} + N^{*} \rightarrow N_{2} + 2^{*}$	R5
formation	$NO^* + N^* \rightarrow N_2O + 2^*$	R6
	$NO^* + O_2^* \rightarrow NO_2^* + O^*$	R7
	$NO^* + O_2^{-*} \rightarrow NO_3^{-*} + *$	R8
	$N_2O^* \rightarrow N_2 + O^*$	R9
H ₂ -SCR	$H_2 + * \rightarrow H_2*$	Ral
	$H_2^* \rightarrow 2H^*$	Ra2
	$N^* + H^* \rightarrow NH^* + *$	Ra3
	$\mathrm{NH}^{*} + \mathrm{H}^{*} \rightarrow \mathrm{NH}_{2}^{*} + ^{*}$	Ra4
	$\mathrm{NH}_2{}^* + \mathrm{H}{}^* \longrightarrow \mathrm{NH}_3{}^* + {}^*$	Ra5
	$O^* + H^* \rightarrow OH^* + *$	Ra6
	$OH^* + H^* \rightarrow H_2O + 2^*$	Ra7
	$NO_2^* + H_2^* \rightarrow ONH^* + OH^*$	Ra8
	$ONH^* + NO^* + H^* \rightarrow N_2 + H_2O + O^* + 2^*$	Ra9
	$ONH^* + NO^* + H^* \rightarrow N_2O^* + H_2O + 2^*$	Ra10
	$4NH_3 + 4NO + 2O_2 \rightarrow 4N_2 + 6H_2O$	Ra11
	$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$	Ra12
CO-SCR	$\rm CO + * \rightarrow \rm CO*$	Rb1
	$N^* + CO^* \rightarrow NCO^* + *$	Rb2
	$NO_2^* + CO^* \rightarrow NCO^* + O_2^*$	Rb3
	$\text{CO}^* + 2\text{NO}_2^* \rightarrow \text{N}_2 + \text{CO}_2 + 3\text{O}^*$	Rb4
	$NCO^* + NO^* \rightarrow N_2 + CO_2 + 2^*$	Rb5
	$CO^* + O^* \rightarrow CO_2 + 2^*$	Rb6
	$2NCO^* + 3H_2O \rightarrow 2NH_3 + 2CO_2 + O^*$	Rb7
	$NCO^* + NO_2^* \rightarrow N_2 + CO_2 + * + O^*$	Rb8
CH4-SCR	$CH_4^* + O^* \rightarrow CH_3^* + OH^*$	Rc1
	$CH_3^* + O^* \rightarrow CH_2^* + OH^*$	Rc2
	$NO^* + CH_3^* \rightarrow CH_3NO^* + *$	Rc3
	$4CH_3NO + 2NO + 4O_2 \rightarrow 3N_2 + 6H_2O + 4CO_2$	Rc4
	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	Rc5
	$2NO + CH_4 + O_2 \rightarrow N_2 + CO_2 + 2H_2O$	Rc6

 Table S2. Reaction steps of various SCR reactions.