Supplementary information

Defect-Rich Boron doped Carbon Nanotube as

Electrocatalyst for Hybrid Li-air Battery

Yuyang Wang, ^a Mingfu Yu, ^a Tianyu Zhang, ^a Zhichao Xue, ^b Ying Ma ^c and Hong Sun*^a

a. School of Mechanical Engineering, Shenyang Jianzhu University, 110168 Shenyang, China. Email: sunhongwxh@sina.com

b. School of Science, Shenyang Jianzhu University, 110168 Shenyang, China

c. School of Material Science and Engineering, Shenyang Jianzhu University, 110168 Shenyang, China

Corresponding author: <u>sunhongwxh@sina.com</u>

Catalogue:

- 1. Experimental preparation
- 2. Calculation of DFT
- 3. Analysis of experimental results
- 1. Experimental preparation

Fig.S1 Schematic illustration of synthesis process of $\mathsf{BC}_3\mathsf{NT}.$

Table S1 List of chemicals		
Name	Purity	Manufacturer
LiOH	95%	Sinopharm Group
CNT	99. 9%	Beijing Deke Daojin Science and Tecnology Co., LTD
PTFE		Sinopharm Group
NMP	AR	Sinopharm Group
B ₂ O ₃	99%	Sinopharm Group
LISICON		Shenzhen Kejing Star Technology Co.
LITFSI-TEGDME		NJ Scientific.

Fig. S2 Illustrate of HLAB mold.

2. Calculation of DFT

Fig. \$3 Model of nanotube.

Fig. S4 Energy convergence diagram of optimizatic process.

Under alkaline conditions, the ORR and OER four-electron reaction path is in the ESI. † $O_2(g) + H_2O(l) + e^- + * \rightarrow OOH^* + OH^-$ (S1)

$$00H^* + e^- \rightarrow 0^* + 0H^- \tag{S2}$$

$$0^* + H_2 O(l) + e^- \to 0H^* + 0H^-$$
(S3)

$OH^* + e^- \rightarrow OH^-$ (S4)

 \ast represents the active site on the catalyst surface, and (I) and (g) represent the liquid and gas phases, respectively.

The OER reaction path is opposite to the ORR reaction path : $OH^- + * \rightarrow OH^* + e^-$

 $OH^* + OH^- \rightarrow O^* + H_2O(l) + e^-$ (S6)

(S5)

$$0^* + 0H^- \to 00H^* + e^-$$
 (S7)

$$O_2(g) + H_2O(l) + e^- + * \to OOH^* + OH^-$$
(S8)

3. Analysis of experimental results

Table S2 Content of element					
	B_2O_3 : CNT=2:1	B ₂ O ₃ : CNT=5∶1	B ₂ O ₃ : CNT=8∶1		
C	92. 20%	87.86%	88. 58%		
В	2.84%	4. 68%	5.15%		
0	4.10%	5.83%	2.98%		

Fig. ${\bf S5}$ LISICON membrane after test.

Fig. S6 Lithium dendrites.

Fig. S7 XPS spectrum: (a)	Total, (b)O	1s,	(c)Li	1s.
---------------------------	-------------	-----	-------	-----

Catalyst	Cycling number	Initial discharge	Overpotential(V)	Ref
		capacity(mAh∙g ⁻¹)		
Boron doped CNT	165	8900	0. 3	This work
Pt-carbon paper	50		0. 75	Sun ¹
MNO-CNT-CNFFs	21		0.15 (low current)	Ji ²
Mn ₃ O ₄	20	221 (0.5 mA·cm ⁻²)	1.3	Li ³
Graphite			0. 47	Zhou ⁴

Tabla	63	Comparison	of	hattory	norformanaa
lable	აა	Comparison	01	pallery	periormance

- Sun, Y. Lithium Ion Conducting Membranes for Lithium-Air Batteries. Nano Energy 2013, 2 (5), 801-816. https://doi.org/10.1016/j.nanoen.2013.02.003.
- Ji, D.; Peng, S.; Safanama, D.; Yu, H.; Li, L.; Yang, G.; Qin, X.; Madhavi, S.; Adams, S.; Ramakrishna, S. Design 3D Hierarchical Architectures of Carbon and Highly Active Transition-Metals (Fe, Co, Ni) as Bifunctional Oxygen Catalysts for Hybrid Lithium-Air Batteries. *Chemistry of Materials* 2017, 29. https://doi.org/10.1021/acs.chemmater.6b05056.
- (3) Li, L.; Zhao, X.; Manthiram, A. A Dual-Electrolyte Rechargeable Li-Air Battery with Phosphate Buffer Catholyte. *Electrochem. Commun.* 2012, 14 (1), 78-81. https://doi.org/10.1016/j.elecom.2011.11.007.
- (4) Qiao, Y.; Wang, Q.; Mu, X.; Deng, H.; He, P.; Yu, J.; Zhou, H. Advanced Hybrid Electrolyte Li-02 Battery Realized by Dual Superlyophobic Membrane. Jou/e 2019, 3 (12), 2986-3001. https://doi.org/10.1016/j.joule.2019.09.002.