Supporting Information

Theoretical investigation into the effect of water on the N₂O decomposition reaction over Cu-ZSM-5 catalyst

Kuyyilthodi M. Farhan, Ahammad N. K. Thabassum, Thufail M. Ismail and P. K. Sajith*

Department of Chemistry, Farook College, Kozhikode-673632, Kerala, India

Email: pksajisiv@gmail.com; pksajith@farookcollege.ac.in

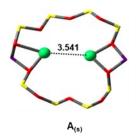
Table of Contents

Fig. S1 10-membered QM layer from the optimized geometries of intermediates and transition

states involved in the N₂O decomposition.

Fig. S2 Structural changes and corresponding reaction energy barriers for N₂O decomposition

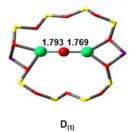
over 2T model dicopper active site of Cu-ZSM-5


Fig. S3 Calculated singlet and triplet potential energy surface of decomposition of N₂O over bare dicopper active site (a) In the absence of water (b) In the presence of coadsorbed

water.

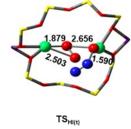
Fig. S4 The complete energy profile diagram of (a) N_2O decomposition in the absence of water

(**b**) N_2O decomposition in the presence of coadsorbed water.

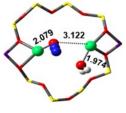

- **Fig. S5** Selected geometrical parameters of the representative structures of intermediates and transition states obtained at the ONIOM (B3LYP/6-311++G(d,p):UFF) level of theory.
- Fig. S6 Energy profile diagram for (a) Formation of [Cu–(OH)–Cu(OH)]²⁺ centers (b) H₂O assisted proton transfer, and (c) Regeneration of [Cu...Cu]²⁺ obtained at the ONIOM (B3LYP/6-311++G(d,p):UFF) level of theory.

1.864 1.762 TS_{EF(t)}

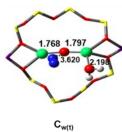
1.592

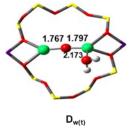


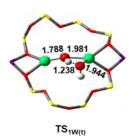
 $F_{(t)}$



 $H_{(t)}$

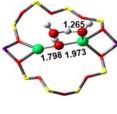

 $I_{(t)}$




B_{w(s)}



TS_{BCw(s)}



TS_{23W(t)}

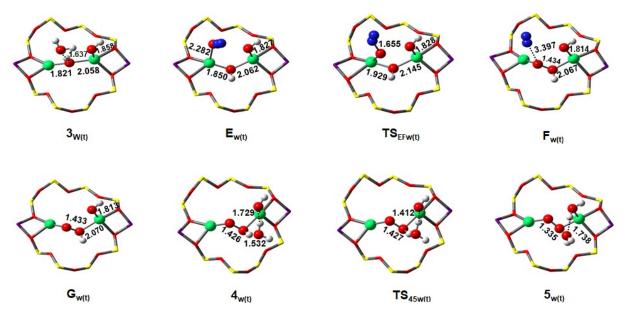


Fig. S1 10-membered QM layer from the optimized geometries of intermediates and transition states involved in the N_2O decomposition. Selected bond distances are in Å.

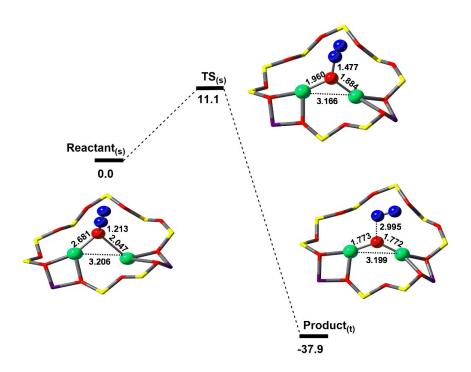
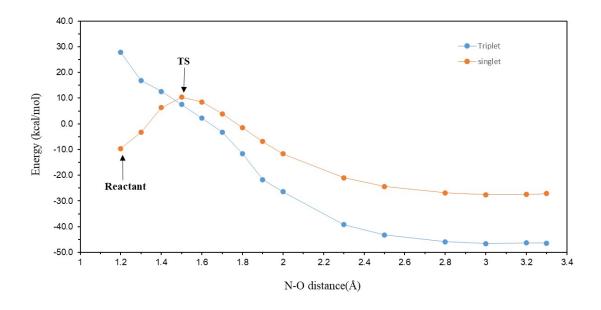



Fig. S2 Structural changes and corresponding reaction energy barriers for N_2O decomposition on 2T model. The relative energies are in kcal/mol. The selected bond distances are in Å. The spin state of the corresponding structure is given in parentheses, where s and t represent closedshell singlet and triplet state, respectively.

(a)

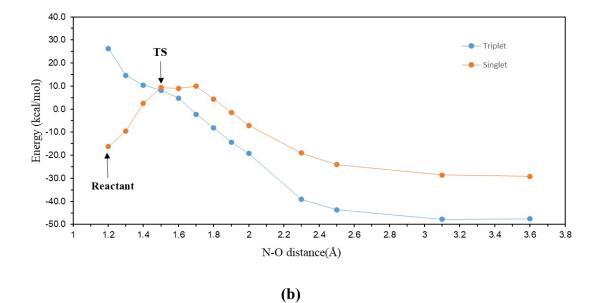


Fig. S3 Calculated singlet and triplet potential energy surface of decomposition of N_2O over bare dicopper active site (a) In the absence of water (b) In the presence of coadsorbed water.

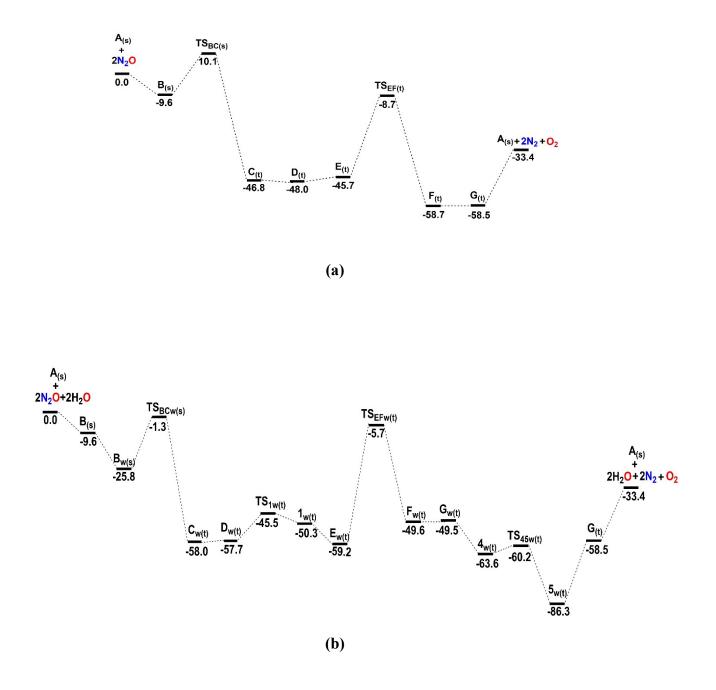
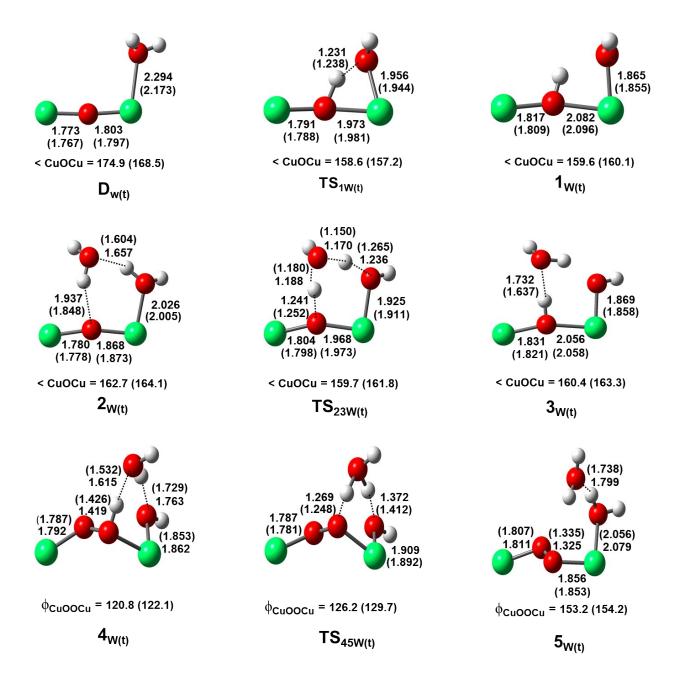
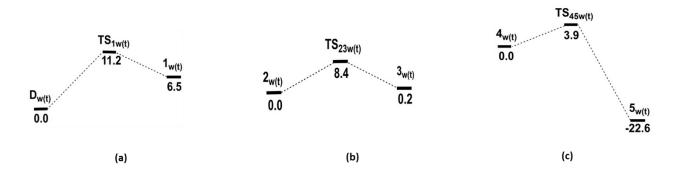




Fig. S4 The overall energy profile diagram of (a) N_2O decomposition in the absence of water (b) N_2O decomposition in the presence of coadsorbed water. The relative energies are in kcal/mol.

Fig. S5 Selected geometrical parameters of the representative structures of intermediates and transition states calculated at the ONIOM (B3LYP/6-311++G(d,p):UFF) level of theory. The selected bond distances (Å) and angles (degree) are indicated. The values in parentheses show the corresponding values obtained at the ONIOM (B3LYP/GEN:UFF) level of theory.

Fig. S6 Energy profile diagrams for (a) Formation of $[Cu-(OH)-Cu(OH)]^{2+}$ centers (b) H₂O assisted proton transfer, and (c) Regeneration of $[Cu...Cu]^{2+}$ calculated at the ONIOM (B3LYP/6-311++G(d,p):UFF) level of theory. All values are in kcal/mol.