Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Highly stable Pd²⁺ species anchoring on ethylenediamine-grafted-MIL-101(Cr) as a robust oxidation catalyst

Materials

Terephthalic acid (98%), Chromium(III) nitrate (Cr(NO₃)₃.9H₂O, 99%), ethylenediamine (99%), palladium(II) acetate (Pd(OAc)₂, 98%), phenylacetylene (98%), iodobenzene (98%) and nitrobenzene (99%) were obtained commercially from Sigma-Aldrich. N,N-dimethylformamide (DMF, 99.8%), methanol (99.8%), ethanol (99.5%), acetone (99.5%), acetonitrile (99.8%), potassium carbonate (K₂CO₃, 99%), sodium carbonate (Na₂CO₃, 99%), 30% H₂O₂ solution and diethyl ether (99%) were provided by Carlo. Styrene (99%, Merck) was purified by extracting twice with 10% sodium hydroxide (NaOH, 98%) solution, washed three times with distilled water and dried over calcium hydride (Merck, 95%). Toluene (99.5%), dichloromethane (99.8%) and *n*-hexane (95%) were dried and stored under molecular sieve 4A.

Fig. S1 Pd L₃-edge XANES spectra of Pd foil and PdCOCl₂ standards, recorded at room temperature.

Fig. S2 TGA and DTG thermogram of MIL-101(Cr) when (a, a') grafted with ethylenediamine and introduced (b, b') 0.03 wt%Pd and (c, c') 0.2 wt%Pd over ethylenediamine-grafted samples

Fig. S3 N_2 adsorption isotherm of (a) ethylenediamine-grafted MIL-101(Cr) with (b) 0.03 wt%Pd and (c) 0.2 wt%Pd loadings.

Determination of ethylenediamine (en) in MIL-101(Cr) samples

The amount of ethylenediamine can be determined by the total N content from CHN analysis. However, in addition to ethylenediamine, this N content also consists of the nitrate counter anion and remained DMF, which cannot directly be measurable.

From N 1S XPS spectra (Fig. 2), the mol fraction from those N species can be calculated through integrated of each peak.

Table S1 mol fraction and ethylenediamine content in MIL-101(Cr), en-MIL-101(Cr), Pd-en-MIL-101(Cr) and Pd-MIL-101(Cr) samples

Fntry	Samples	Mol fraction ^{<i>a</i>} (%)			Total N content ^b NO ₃ - content		en content	
Liitiy	Samples .	DMF	NO ₃ -	en	(wt%)	(wt%) -	(wt%)	(mmol/g)
1	MIL-101(Cr)	47	53	-	1.9	1.00	-	-
2	0.5en-MIL-101(Cr)	-	49	51	3.2	1.57	1.63	0.58
3	0.8en-MIL-101(Cr)	-	49	51	4.0	1.97	2.04	0.73
4	1.2en-MIL-101(Cr)	-	39	61	5.3	2.06	3.23	1.15
5	0.03Pd-0.5en-MIL-101(Cr)	-	46	54	2.5	1.15	1.35	0.48
6	0.03Pd-0.8en-MIL-101(Cr)	-	-	-	3.4	1.73 ^c	1.67^{c}	0.60^{c}
7	0.03Pd-1.2en-MIL-101(Cr)	-	43	57	4.6	1.96	2.62	0.94
8	0.2Pd-0.5en-MIL-101(Cr)	-	-	-	2.1	1.13 ^c	0.97^{c}	0.35 ^c
9	0.2Pd-0.8en-MIL-101(Cr)	-	-	-	2.2	1.00^{c}	1.20 ^c	0.43 ^c
10	0.2Pd-1.2en-MIL-101(Cr)	-	42	58	3.3	1.40	1.91	0.68
11	0.03Pd-MIL-101(Cr)	55	45	-	1.6	0.72	-	-
12	0.2Pd-MIL-101(Cr)	-	-	-	1.3	-	-	-

^aCalculated from integrated peak of N 1S XPS spectra, ^bCHN analysis and ^cEstimated content

Calculation of ethylenediamine content

From XPS result, we can calculate ethylenediamine content as follow; For example, 1.2en-MIL-101(Cr)

From XPS analysis				
N %mol of nitrate	=	39	0⁄0	
N %mol of ethylenediamine	=	61	%	
From CHN analysis				
Total N content	=	5.3		wt%
	=	5.3		g/100 g _{sample}
N content of nitrate	=	(5.3 x 39) /	100	g/100 g _{sample}
	=	2.1		$g/100 g_{sample}$
N content of ethylenediamine	=	(5.3 x 61) /	100	$g/100 g_{sample}$
	=	3.23		$g/100 g_{sample}$
mmol of ethylenediamine	=	(3.2 x 1000))/(14 x 2)	mmol/100g _{sample}
	=	115		$mmol/100g_{sample}$
	=	1.15		mmol/g _{sample}

Fig. S4 FTIR spectra of (a) ethylenediamine-grafted MIL-101(Cr) with (b) 0.03 wt%Pd and (c) 0.2 wt%Pd loadings.

Fig. S5 High-resolution N 1s XPS spectra of (a) 0.8en-MIL-101(Cr), (b) 1.2en-MIL-101(Cr), (c) 0.03Pd-1.2en-MIL-101(Cr) and (d) 0.2Pd-1.2en-MIL-101(Cr) samples.

		Absorption edge energy (eV)						
	Temp (°C)	0.03Pd-1.2en- MIL-101(Cr)	0.03Pd-MIL- 101(Cr)	0.03Pd-SiO ₂	0.2Pd-0.8en- MIL-101(Cr)	0.2Pd-MIL- 101(Cr)	0.2Pd-SiO ₂	
Activation	150	3174.2	3174.1	3173.3	3174.2	3173.6	3173.7	
	30	3174.2	3173.1	3173.4	3174.2	3173.5	3173.6	
Reduction	70	3174.2	3173.2	3173.3	3174.2	3173.3	3173.4	
under H ₂	110	3174.2	3173.1	3173.5	3174.2	3173.4	3173.5	
	150	3174.2	3173.0	3173.1	3174.2	3173.4	3173.5	
Holding in	150 (20min)	3174.2	3173.2	3173.4	3174.2	3173.2	3173.4	
H_2 at	150 (40min)	3174.2	3173.2	3173.4	3174.2	3173.3	3173.5	
150 °C	150 (60min)	3174.2	3173.2	3173.3	3174.2	3173.3	3173.5	

Table S2 Absorption edge energy of all samples under *in situ* reduction from 30 °C to 150 °C

Fig. S6 Pd component from Pd L₃-edge XANES linear combination fitting of 0.2Pd-0.8en-MIL-101(Cr), 0.2Pd-MIL-101(Cr) and 0.2Pd-SiO₂ upon in situ reduction at 150 °C under 10%H₂/N₂.

Fig. S7 Pd²⁺ component from Pd L₃-edge XANES linear combination fitting of 0.03Pd-1.2en-MIL-101(Cr), 0.03Pd-MIL-101(Cr) and 0.03Pd-SiO₂ upon in situ reduction at 150°C during 0 – 60 min under 10%H₂ in N₂.

Table S3 R-factor of 0.03 wt%Pd loaded over 1.2en-MIL-101(Cr), MIL-101(Cr) and SiO₂ samples and 0.2 wt%Pd loaded over 0.8en-MIL-101(Cr), MIL-101(Cr) and SiO₂ samples after linear combination fitting.

	Temperature	R factor *						
	(°C)	0.03Pd-1.2en- MIL-101(Cr)	0.03Pd-MIL- 101(Cr)	0.03Pd-SiO ₂	0.2Pd-0.8en- MIL-101(Cr)	0.2Pd-MIL- 101(Cr)	0.2Pd-SiO ₂	
Activation	150	0.045	0.007	0.050	0.046	0.035	0.037	
	30	0.045	0.009	0.043	0.037	0.048	0.053	
Reduction	70	0.045	0.027	0.044	0.026	0.045	0.054	
10%H ₂ /N ₂	110	0.031	0.040	0.044	0.028	0.046	0.051	
	150	0.038	0.014	0.045	0.030	0.044	0.057	
	150 (20 min)	0.043	0.021	0.036	0.034	0.051	0.051	
Hold at 150°C	150 (40 min)	0.045	0.023	0.041	0.027	0.059	0.057	
	150 (60 min)	0.034	0.007	0.050	0.046	0.034	0.037	

$$^{*}R = \frac{\sum (data - fit)^{2}}{\sum (data)^{2}}$$

Fig. S8 Effect of ethylenediamine on Pd²⁺ activity of Pd-en-MIL-101(Cr) and Pd(OAc)₂.