Supporting Information

Highly Active and Stable Co(Co₃O₄)/Sm₂O₃ Nano crystallites Derived from Sm₂Co₇ and SmCo₅ Intermetallic Compound in NH₃ Synthesis and CO₂ Conversion

Vijaykumar S Marakatti,^{a*} Maria Ronda-Lloret,^b M. Krajčí,^c Boby Joseph,^d Carlo Marini,^e Juan Jose Delgado,^f François Devred, ^a N. Raveendran Shiju,^b Eric M Gaigneaux^{a*}

^aInstitute of Condensed Matter and Nanosciences (IMCN), Molecular chemistry, Solids and caTalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium.

^b Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1090 GD, The Netherlands.

^c Institute of Physics, Slovak Academy of Sciences, Bratislava SK-84511, Slovakia

^dElettra-Sincrotrone Trieste S. C. p. A., S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy

^eALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona, Spain

^fDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, e IMEYMAT, Instituto Universitario de Investigación en Microscopía Electrónica y Materiales, Universidad de Cádiz, Puerto Real 11510, Spain

*Corresponding author: <u>eric.gaigneaux@uclouvain.be</u>, <u>chmvijay@gmail.com</u> Phone: +32 (0)10 47 36 65 - Fax: +32 (0)10 47 36 49

Figure S1.Comparison of low and high energy XRD patterns of $Sm_2Co_7(a\&b)$ and $SmCo_5(c\&d)$ intermetallic compounds with simulated patterns

Figure S2. . Comparison of low and high energy XRD patterns of $\rm Sm_2Co_7_550$ (a&b) and $\rm Sm_2Co_7_550_H_2$ (c&d).

Figure S3. Comparison of low and high energy XRD patterns of $SmCo_5_550$ (a&b) and $SmCo_5_550_{H_2}$ (c&d).

Figure S4. XRD pattern a) $Sm_2Co_7 b$) $SmCo_5 c$) Sm_5Co_7 compounds synthesized by HT1 and HT2 hydrothermal methods. d) Comparison of XRD patterns of $SmCoO_3$ with simulated one before reaction and after reaction (AR).

Figure S5. SEM images, particle size distribution, color mapping (Blue-Sm, Yellow, Co, Green -O) and EDAX spectra of a) $SmCo_5 b$ $SmCo_5 550$, and c) $SmCo_5 550_H_2$.

Figure S6. a) Co $2p_{3/2}$ XPS spectra, b) SEMand c) TEM images of SmCoO₃_H₂

Figure S7. HAADF-STEM images and elemental color mapping of $Sm_2Co_7_550$

Figure S8. HAADF-STEM images and elemental color mapping of $Sm_2Co_7_550_H_2$

Figure S9. HAADF-STEM images and elemental color mapping of $SmCo_5_50_H_2$

Figure S10. HAADF-STEM images and elemental color mapping of SmCo₅_HT2.

Figure S11. N_2 adsorption-desorption isotherms of Sm_xCo_y catalysts synthesized from hydrothermal method.

Figure S12. XPS of all the Co/Sm₂O₃ catalysts synthesized by hydrothermal method.

Figure S13. Comparison of XRD patterns of Sm_2Co_7 and $SmCo_5$ after reaction with simulated SmO and SmN.

Reaction path

Figure S14. Energy profile of hydrogenation steps of NH_3 synthesis on the Co(111) surface.

Figure S15. XRD patterns of all the Co/Sm₂O₃ after oxidation at 600 °C a) IMC derived, b&c) hydrothermally synthesized and d) Perovskite derived. In case of all the HT catalysts a small amount of SmCoO₃ is formed along with Co₃O₄/Sm₂O₃, but for IMC derived catalysts only Co₃O₄/Sm₂O₃ phase is observed instead. For perovskite derived Co/Sm₂O₃ catalyst the perovskite structure is completely restored.

Entry	Catalysts	Crystallite Size(nm)			
	-	Intermetallic	Sm_2O_3	Co ₃ O ₄	Co
1	Sm ₂ Co ₇	34			
2	$Sm_2Co_7_550$		5*	11	
3	$Sm_2Co_7_550_H_2$		10*		19
4	SmCo ₅	29			
5	SmCo ₅ _550		11*	13	
6	$SmCo_5_550_H_2$		15*		23
7	$Sm_2Co_7_550$ HT1		26		25
8	Sm ₂ Co ₇ _550_HT2		17		23
9	SmCo ₅ 550_HT1		22		19
10	SmCo ₅ _550_HT2		24		30
11	$Sm_5Co_7_550$ HT1		27		25
12	Sm ₅ Co ₇ _550_HT2		23		12
13	$SmCoO_3^{-}550$		19		

Table S1. Crystalite size of Sm_xCo_y catalysts calculated using the Scherrer equation.

*determined by high energy synchrotron XRD.

Catalysts	T_{α}	Τβ	T_{γ}
Sm ₂ Co ₇ _550	361	417	471
$SmCo_5$ 550	346	394	446
Sm ₂ Co ₇ 550 HT1	318	365	418
Sm ₂ Co ₇ 550 HT2	328	401	472
$SmCo_5_550_HT1$	319	366	401
SmCo ₅ 550 HT2	320	358	399
Sm ₅ Co ₇ 550 HT1	340	432	502
Sm ₅ Co ₇ 550 HT2	355	437	496

Table S2. Fitted components of TPR-H₂ spectra of Sm_xCo_y catalysts.

Table S3. Comparison of catalytic activity of the Co/Sm ₂ O ₃ catalyst with other 1	reported
cobalt-based catalysts	

Entry	Catalyst	Surface	Temperature	Pressure	NH ₃ yield	Ea	Ref
		Area	[°C]	[MPa]	[µmole/g/h]	[kJ/mole]	
		[m ² /g]					
1	Co-LiH	42	300	1	4800	52.1	[24]
2	Co-BaH2/CNT	53	300	1	4800	58.0	[25]
3	Co/BaTiO _{2.35} H ₀₆₅	05	400	5	550	69.0	[50]
4	Co/C12A7:e ⁻	01	340	0.1	912	49.5	[26]
5	LaCoSi	01	400	0.1	1250	42.0	[51]
6	Co₃Mo₃N	18	400	0.1	489	59.0	[51]
7	Co/CeO ₂ -dopamine	61	425	1	19200	72.0	[22]
8	Co/CeO ₂	60	425	1	3810	107	[22]
9	LaCoO ₃	05	450	1	4600		[33]
10	Sm ₂ Co ₇ _550_H ₂	13	350	0.4	250	77.0	Present work
			400	0.4	500		
			450	0.4	1600		
			500	0.4	3850		
11	Co/SmO	01	350	0.4	150	52.0	Present work
			400	0.4	300		
			450	0.4	550		
			500	0.4	1000		