Supplementary Information.

Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H_2O_2 through incorporation of base metals.

Alexandra Barnes^[a], Richard J. Lewis^[a], David J. Morgan^{[a], [b]}, Thomas E. Davies^[a] and Graham J. Hutchings^[a]

^[a]Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

^[b]Harwell XPS, Research Complex at Harwell (RCaH) Didcot, OX11 0FA, UK

⁺These authors contributed equally to this work.

*LewisR27@cardiff.ac.uk, Hutch@cardiff.ac.uk

Table S.1. Synthesis details of the precursors used in the preparation of key mono-, bi- and tri-metallic 1%AuPdX/TiO₂ catalysts.

Catalyst	Au precursor	Precursor vol. / µL (mgmL ⁻¹)	Pd precursor	Precursor vol. / μL (mgmL ⁻¹)	Tertiary metal precursor	Precursor vol. / µL (mgmL ⁻¹)
1%Au/TiO ₂	HAuCl ₄ .3H ₂ O	816 (12.25)	-	-	-	-
1%Pd/TiO ₂	-	-	PdCl ₂	1667 (6.00)	-	-
1%AuPd _(1.00) /TiO ₂	HAuCl ₄ .3H ₂ O	530 (12.25)	PdCl ₂	585 (6.00)	-	-
1%AuPd _(0.975) Pt _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	H ₂ PtCl ₆ .6H ₂ O	231 (1.08)
1%AuPd _(0.975) Ni _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	Ni(NO ₃) ₂	115 (2.18)
1%AuPd _(0.975) Sn _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	SnCl ₂	52 (4.84)
1%AuPd _(0.975) Cu _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	CuCl ₂	106 (2.36)
1%AuPd _(0.975) Co _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	CoCl ₂ .6H ₂ O	49 (5.10)
1%AuPd _(0.975) In _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	InCl ₃	49 (5.11)
1%AuPd _(0.975) Ga _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	Ga(NO ₃) ₃ .xH ₂ O	45 (5.50)
1%AuPd _(0.975) Zn _(0.025) /TiO ₂	HAuCl ₄ .3H ₂ O	517 (12.25)	PdCl ₂	570 (6.00)	Zn(NO ₃) ₂ .6H ₂ O	46 (5.43)

Note1 : In the case of the tri-metallic catalysts the combined loading of Au and Pd is 0.975 wt.% (Au: Pd = (1:1 mol/mol)) and that of the tertiary metal (Pt, Ni, Sn, Cu, Co, In, Ga or Zn) is 0.025 wt.%. In all cases catalyst are exposed to an oxidative heat treatment prior to use (static air, 3 h, 400 °C, 10°Cmin⁻¹). **Note 2:** Values in parentheses refer to metal loading of (Au+Pd) or tertiary metal. In all instances total metal loading is 1 wt.% and Au: Pd: X = 1: 1 (mol/mol).

Figure S.1. X-ray diffractograms of 1%AuPd_(0.975)X_(0.025)/TiO₂ catalysts, prepared by solimmobilisation. (a) TiO₂, (b) 1%AuPd_(1.00)/TiO₂, (c) 1%AuPd_(0.975)Ni_(0.025)/TiO₂, (d) 1%AuPd_(0.975)Cu_(0.025)/TiO₂ and (e) 1%AuPd_(0.975)Zn_(0.025)/TiO₂. Note 1: No reflections associated with immobilised metal species are observed in any of the as-prepared catalysts. ICDD patterns are provided for reference (TiO₂ anatase ICDD: 01-089-4921, TiO₂ rutile ICDD:07-089-0555). Note 2: All catalysts exposed to an oxidative heat treatment (400 °C, 3 h, static air, ramp rate = 10° Cmin¹).

Table S.2. Actual metal loading of 1%AuPd_(0.975)X_(0.025)/TiO₂ catalysts, as determined by ICP-OES microwave assisted HF digestion.

Catalyst	Theoretical loading / wt.%			Actual loading / wt.%			
	Au	Pd	Х	Au	Pd	Х	
1%AuPd _(1.00) /TiO ₂	0.649	0.351	-	0.645	0.437	-	
1%AuPd _(0.975) Ni _(0.025) /TiO ₂	0.633	0.342	0.025	0.640	0.416	0.001	
1%AuPd _(0.975) Cu _(0.025) /TiO ₂	0.633	0.342	0.025	0.644	0.415	0.002	
1%AuPd _(0.975) Zn _(0.025) /TiO ₂	0.633	0.342	0.025	0.637	0.405	0.001	

Note: Values in parentheses refer to metal loading of (Au+Pd) or tertiary metal. In all instances total metal loading is 1 wt.% and Au: Pd: X = 1: 1 (mol/mol).

Figure S.2. Representative UV-vis spectra from aqueous sol-immobilisation prepared bi-metallic Aubased colloids. (a) Au, (b) AuPd, (c) AuCu, (d) AuZn and (e) AuNi, (f) Au, (g) AuCo, (h) AuPt, (i) AuGa, (j) AuIn, (k) AuSn. The absence of the Au plasmon peak (at approx. 520 nm) in the bimetallic colloids is indicative of alloy formation.

Figure S.3. XPS spectra of Pd(3d) regions for as-prepared (a) 1%AuPd_(X)Ni_(1-X)/TiO₂, (b) 1%AuPd_(X)Zn_(1-X)/TiO₂ and (c) 1%AuPd_(X)Cu_(1-X)/TiO₂ catalysts as a function of tertiary metal concentration. *Key:* Au(4d) (*red*), Pd^o (*blue*), Pd²⁺ (*magenta*), Ca²⁺ (*green*).

Catalyst	Reaction	H ₂	H_2O_2	Productivity /	H_2O_2
	time / min	Conversion	Selectivity	mol _{H2O2} kg _{cat} -	Conc.
		/ %	1%	¹ h ⁻¹	/ wt .%
1%AuPd _(1.00) /TiO ₂	30	12	59	61	0.125
	60	22	55	51	0.207
	75	32	47	51	0.258
1%AuPd _(0.975) Ni _(0.025) /TiO ₂	30	32	41	107	0.215
1%AuPd _(0.975) Cu _(0.025) /TiO ₂	30	31	40	94	0.188
1%AuPd _(0.975) Zn _(0.025) /TiO ₂	30	24	50	98	0.197

Table S.3. Comparison of catalytic selectivity towards H_2O_2 at iso-conversion.

 $\overline{H_2O_2}$ direct synthesis reaction conditions: Catalyst (0.01 g), H₂O (2.9 g), MeOH (5.6 g), 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi), 0.5 h, 2° C, 1200 rpm. Note: Values in parentheses refer to metal loading of (Au+Pd) or tertiary metal. In all instances total metal loading is 1 wt.% and Au: Pd: X = 1: 1 (mol/mol).

Figure S.4. Representative bright field transmission electron micrographs and corresponding particle size histograms of TiO₂ supported tri-metallic catalysts, prepared by a sol-immobilisation methodology. **(a)**1%AuPd_(1.00)/TiO₂, **(b)** 1%AuPd_(0.975)Ni_(0.025)/TiO₂,**(c)** 1%AuPd_(0.975)Cu_(0.025)/TiO₂, **(d)** 1%AuPd_(0.975)Zn_(0.025)/TiO₂.

Figure S.5. XPS spectra of Pd(3d) regions for (a) 1%AuPd_(1.00)/TiO₂, (b) 1%AuPd_(0.975)Ni_(0.025)/TiO₂, (c) 1%AuPd_(0.975)Zn_(0.025)/TiO₂ and (d) 1%AuPd_(0.975)Cu_(0.025)/TiO₂ catalysts as a function of reaction time. *Key:* Au(4d) (*red*), Pd⁰ (*blue*), Pd²⁺ (*magenta*). H₂O₂ direct synthesis reaction conditions: Catalyst (0.01g), H₂O (2.9g), MeOH (5.6g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 2 °C 1200 rpm. Note: Used catalysts are dried under vacuum (30 °C, 16 h) prior to subsequent utilisation in the direct synthesis of H₂O₂ or XPS analysis.

Catalyst	Rate of reaction / mmol _{H2O2} mmol _{metal} - ¹ min ⁻¹					
-	Use	e 1	Use 2*			
	5 min	30 min	5 min	30 min		
1%AuPd _{(1.00)/} TiO ₂	16.40	14.06	18.22	10.54		
1%AuPd _(0.975) Ni _(0.025) /TiO ₂	57.19	25.16	43.43	22.37		
1%AuPd _(0.975) Cu _(0.025) /TiO ₂	41.87	21.39	28.37	18.94		
1%AuPd _(0.975) Zn _(0.025) /TiO ₂	41.86	23.30	36.77	18.40		

Table S.4. Comparison of initial H₂O₂ synthesis rates over various TiO₂ supported catalysts.

*Catalyst used for 30 min under standard reaction conditions prior to determination of reaction rate over 0.083 or 0.5 h. H_2O_2 direct synthesis reaction conditions: Catalyst (0.01g), H_2O (2.9g), MeOH (5.6g), 5% H_2 / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 2 °C 1200 rpm. Note 1: Reaction rates upon first use (use 1) are calculated based on the actual metal loading as determined by HF digestion (see Table S.2). Reaction rates upon second use (use 2) account for metal leaching during the initial H_2O_2 synthesis reaction, as determined by ICP-MS analysis of the post reaction solutions (see Table 4). Note 2: Values in parentheses refer to metal loading of (Au+Pd) or tertiary metal. In all instances total metal loading is 1 wt.% and Au: Pd: X = 1: 1 (mol/mol).

Figure S.6. XPS spectra of Pd(3d) regions for the as-prepared **(a)** 1%AuPd_{(1.00}/TiO₂, **(b)** 1%AuPd_(0.975)Ni_(0.025)/TiO₂, **(c)** 1%AuPd_(0.975)Zn_(0.025)/TiO₂ and **(d)** 1%AuPd_(0.975)Cu_(0.025)/TiO₂ catalysts in addition to corresponding spectra after one and two uses in the direct synthesis of H₂O₂. *Key:* Au(4d) (*red*), Pd⁰ (*blue*), Pd²⁺ (*magenta*), Ca²⁺ (*green*). The presence of Ca²⁺ is considered to originate from the reaction mixture. H₂O₂ direct synthesis reaction conditions: Catalyst (0.01g), H₂O (2.9g), MeOH (5.6g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 0.5 h, 2 °C 1200 rpm. Note: Used catalysts are dried under vacuum (30 °C, 16 h) prior to subsequent utilisation in the direct synthesis of H₂O₂ or XPS analysis.

Catalyst	As prepared		Use 1		Use 2	
	Au: Pd	Pd ²⁺ : Pd ⁰	Au: Pd	Pd ²⁺ : Pd ⁰	Au: Pd	Pd ²⁺ : Pd ⁰
1%AuPd _(1.00) /TiO ₂	0.56	1.56	0.50	0.10	0.47	0.20
1%AuPd _(0.975) Ni _(0.025) /TiO ₂	0.58	0.91	0.55	0.20	0.53	0.14
1%AuPd _(0.975) Cu _(0.025) /TiO ₂	0.46	0.63	0.40	0.18	0.55	0.10
1%AuPd _(0.975) Zn _(0.025) /TiO ₂	0.39	0.77	0.36	0.09	0.59	0.08

Table S.5. Effect of catalyst use in the direct synthesis of H_2O_2 on atomic speciation as determined by XPS.

H₂O₂ direct synthesis reaction conditions: Catalyst (0.01g), H₂O (2.9g), MeOH (5.6g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 0.5 h, 2 °C 1200 rpm. **Note1:** All catalysts exposed to an oxidative heat treatment (400 °C, 3 h, static air, ramp rate = 10°Cmin¹). **Note 2**: Used catalysts are dried under vacuum (30 °C, 16 h) prior to subsequent utilisation in the direct synthesis of H₂O₂ or XPS analysis. **Note3:** values in parentheses refer to metal loading of (Au+Pd) or tertiary metal. In all instances total metal loading is 1 wt.% and Au: Pd: X = 1: 1 (mol/mol).