Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Evidence for the "cocktail" nature of platinum-catalyzed alkyne and alkene hydrosilylation reactions

Evgeniia E. Ondar, Julia V. Burykina, Valentine P. Ananikov*

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia

E-mail: val@ioc.ac.ru; http://AnanikovLab.ru

Table of contents

Hydrosilylation reaction conditions	S2
Pt ₂ dba ₃ purity calculation	S2
Electron microscopy study of the initial catalysts	S3
Leaching in solvent	S7
ESI-HRMS online monitoring of model reaction	S11
ESI-HRMS spectra of allyl bromide hydrosilylation reaction mixture	S13
Capture of metal clusters in solution using "nanofishing" procedure	S14
Capture of metal clusters in solution using Fairlamb's method	S17
Electron microscopy study of the catalysts isolated after the reaction	S18
Electron microscopy study of Pt/MWCNT _{THF} and Pt/C catalysts isolated after the reaction with silane variation	ons S21
Platinum nanoparticles size distribution histograms	S24
Hydrosilylation of tolane in the presence of Pt_2dba_3	S26
Characterization data	S27
References	S28

Hydrosilylation reaction conditions

Alkyne / Silane	Phenylacetylene	1-Hexyne	Tolane	3-Hexyne	Trimethylsilyl acetylene
HSiCl ₃	50°C / 5h / neat	50°C / 5h / neat	100°C / 9h / toluene	50°C / 4h / neat	40°C / 5h / neat
HSiEt ₃	50°C / 8h / neat	80°C / 5h / neat	50°C / 8h / neat	80°C / 5h / neat	70°C / 5h / neat
HSiPh ₃	70°C / 4h / neat	70°C / 4h / neat	90°C / 6h / neat	90°C / 8h / neat	70°C / 4h / neat

Table S1. Reaction conditions of hydrosilylation of alkynes.

Pt₂dba₃ purity

The purity of the used Pt_2dba_3 ·CHCl₃ complex was determined by a previously described procedure.¹ Calculation of the purity was based on ¹H NMR characterization of the Pt_2dba_3 complex before catalyst preparation.

Electron microscopy study of the initial catalysts

Figure S1. TEM images of initial Pt/MWCNT_{chl} catalyst.

Figure S2. SEM/EDX of initial Pt/MWCNT_{chl} catalyst.

Figure S3. TEM images of initial Pt/MWCNT_{THF} catalyst.

Figure S4. SEM/EDX of initial Pt/MWCNT_{THF} catalyst.

Figure S5. TEM images of initial Pt/MWCNT_{tol} catalyst.

Figure S6. SEM/EDX of initial Pt/MWCNT_{tol} catalyst.

Figure S7. TEM images of initial Pt/C catalyst.

Leaching in solvent

0.3 wt. % Pt/MWCNT_{chl}, Pt/MWCNT_{THF}, Pt/MWCNT_{tol} and commercial 1 wt. % Pt/C were refluxed for 1 h in THF and analyzed by ESI-HRMS and TEM. Two points were taken into consideration – initial and 1 h points.

Entry	Time point	Pt/C	Pt/MWCNT _{chl}	Pt/MWCNT _{THF}	Pt/MWCNT _{tol}
1	initial	-	$[PtCl_3(dba)(N_2)_2]^-$	-	-
2	1 hour	-	$[PtCl_3]^-$ $[PtCl_2NO_2]^-$ $[PtCl_3(dba)(N_2)_2]^-$ $[PtCl_3(dba)]^-$	[PtCl ₂ NO ₂] ⁻ [PtCl ₃ (dba)(N ₂) ₂] ⁻	[PtCl ₃] ⁻ [PtCl ₃ (dba)NO ₂] ⁻ [PtCl ₃ (dba)(N ₂) ₂] ⁻ [PtCl ₃ (dba)] ⁻

Table S2. ESI-HRMS leaching study of Pt/MWCNT_{chl}, Pt/MWCNT_{THF}, Pt/MWCNT_{tol} catalysts.^a

^a ESI-HRMS study of Pt molecular complexes present in the solution at the beginning of the experiment and after 1 h, respectively.

Figure. S8. ESI-HRMS spectra of Pt/MWCNT_{chl}, Pt/MWCNT_{THF}, Pt/MWCNT_{tol} in THF after 1 h of reflux. Complexes with one platinum atom are colored green, with two Pt atoms in blue and three atoms in orange.

Figure S9. Experimentally detected and theoretical ESI-(-)HRMS spectrum of Pt/MWCNT_{chi}/THF/1h; main experimental peak [M]⁻ = 590.9839 Da, calculated for $[C_{17}H_{14}OCl_3N_4Pt] = 590.9866$ Da, $\Delta = 4.5$ ppm.

Figure S10. Experimentally detected and theoretical ESI-(-)HRMS spectra of Pt/MWCNT_{chl}/THF/1h; main experimental peak $[M-H]^{-} = 579.9590 \text{ Da}$, calculated for $[C_{17}H_{13}O_3Cl_3NPt] = 579.9594 \text{ Da}$, $\Delta = 0.7 \text{ ppm}$.

Figure S11. Experimentally detected and theoretical ESI-(-)HRMS spectra of Pt/MWCNT_{chi}/THF/1h; main experimental peak $[M-H]^{-} = 533.9669 \text{ Da}$, calculated for $[C_{17}H_{13}OCl_3Pt] = 533.9665 \text{ Da}$, $\Delta = 0.8 \text{ ppm}$.

[M] = 311.8938 Da, calculated for $[PtCl_2NO_2]$ = 311.8937 Da, Δ = 0.3 ppm.

Figure S13. Experimentally detected and theoretical ESI-(-)HRMS spectra of Pt/MWCNT_{chi}/THF/1h; main experimental peak $[M]^{-}$ = 300.8689 Da, calculated for [PtCl₃] = 300.8691 Da, Δ = 0.7 ppm.

Table S3. Pt NPs siz	e confidence interv	als before and 1 l	h after the experiment.
----------------------	---------------------	--------------------	-------------------------

Entry	Precatalyst	Initial Pt NPs size, nm ^a	Pt NPs size after treatment, nm ^b
1	Pt/C	3.9 ± 1.0	3.3 ± 1.3
2	Pt/MWCNT _{ch}	ı 2.1 ± 0.6	1.9 ± 0.5
3	Pt/MWCNT _{TF}	1F 2.2 ± 0.2	2.0 ± 0.7
4	Pt/MWCNT _{to}	2.1 ± 0.6	1.6 ± 0.5

^a Pt NPs size on the surface of the initial catalysts before the leaching experiment; ^b Pt NPs size on the surface of the catalysts after 1 h of treatment.

Figure. S14. Gauss-smoothed curves (3 sec, 5 cycles) for the real-time abundances of ions in tolane (**1a**) and trichlorosilane (**2a**) reaction catalysed by $Pt/MWCNT_{chl}$.

Figure. S15. Gauss-smoothed curves (3 sec, 5 cycles) for the real-time abundances of ions in tolane (**1a**) and trichlorosilane (**2a**) reaction-catalysed Pt/MWCNT_{tol}.

ESI-HRMS spectra of the allyl bromide hydrosilylation reaction mixture

Figure S16. Experimentally detected and theoretical ESI-(-)HRMS spectra of Pt/MWCNT_{THF}/THF/5h; main experimental peak $[M]^{-}$ = 466.7712 Da, calculated for $[C_{3}H_{5}PtBr_{2}Cl_{2}]$ = 466.7747 Da, Δ = 7.5 ppm.

Figure S17. Experimentally detected and theoretical ESI-(-)HRMS spectra of Pt/MWCNT_{THF}/THF/5h; main experimental peak [M] = 422.8238 Da, calculated for $[C_{3}H_{5}PtBrCl_{3}] = 422.8254$ Da, $\Delta = 3.8$ ppm.

Capture of metal clusters in solution using the "nanofishing" procedure

Figure S18. TEM image of Pt NPs from $HSiCl_3$ (2a) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/MWCNT_{chl}.

Figure S19. TEM image of Pt NPs from HSiCl₃ (2a) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/MWCNT_{THF}.

Figure S20. TEM image of Pt NPs from HSiCl₃ (2a) and Ph₂C₂ (1a) reaction supernatant in the presence of Pt/MWCNT_{tol}.

Figure S21. TEM image of Pt NPs from $HSiCl_3$ (2a) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/C.

Figure S22. TEM image of Pt NPs from HSiCl₃ (2a) and allyl bromide reaction supernatant in the presence of Pt/C.

Figure S23. TEM image of Pt NPs from HSiCl₃ (2a) and allyl bromide reaction supernatant in the presence of Pt/MWCNT_{THF}.

Capture of metal clusters in solution using Fairlamb's method

The Fairlamb's method² was provided to check the aggregation of Pt particles in the supernatant. The model reaction was carried out in the presence of Pt/MWCNT_{chl}, and the reaction mixture was filtered by using a PTFE membrane with a pore size of 0.45 μ m. 20 mg of PVP (polyvinylpirrolidone, mol. wt. 40000) was added into 1 ml of the supernatant. The precipitate was sampled on the TEM grid and washed with ethanol. The grid was examined by use of TEM.

Figure S24. TEM image of Pt NPs from $HSiCl_3$ (**2a**) and Ph_2C_2 (**1a**) reaction solution in the presence of Pt/MWCNT_{chl} by use of PVP (polyvinylpyrrolidone).

Electron microscopy study of the catalysts isolated after the reaction

Figure S25. TEM images of Pt nanoparticles of Pt/C after the model reaction.

Figure S26. TEM images of Pt nanoparticles of $Pt/MWCNT_{chl}$ after the model reaction.

Figure S27. TEM images of Pt nanoparticles of $Pt/MWCNT_{THF}$ after the model reaction.

Figure S28. TEM images of Pt nanoparticles of $Pt/MWCNT_{tol}$ after the model reaction.

Figure S29. TEM images of Pt nanoparticles of Pt/MWCNT_{THF} after allyl bromide hydrosilylation by HSiCl₃.

Figure S30. TEM images of Pt nanoparticles of Pt/C after allyl bromide hydrosilylation by HSiCl₃.

Electron microscopy study of $Pt/MWCNT_{THF}$ and Pt/C catalysts isolated after reactions with silane variation

Figure S31. TEM image of Pt NPs from HSiCl₃ (2a) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/MWCNT_{THF}.

Figure S32. TEM image of Pt NPs from HSiEt₃ (2b) and Ph₂C₂ (1a) reaction supernatant in the presence of Pt/MWCNT_{THF}.

Figure S33. TEM image of Pt NPs from HSiPh₃ (2c) and Ph₂C₂ (1a) reaction supernatant in the presence of Pt/MWCNT_{THF}.

Figure S34. TEM image of Pt NPs from $HSiCl_3$ (2a) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/C.

Figure S35. TEM image of Pt NPs from $HSiEt_3$ (2b) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/C.

Figure S36. TEM image of Pt NPs from $HSiPh_3$ (2c) and Ph_2C_2 (1a) reaction supernatant in the presence of Pt/C.

Platinum nanoparticles size distribution histograms

After the hydrosilylation of tolane by $HSiEt_3$ in the presence of $Pt/MWCNT_{THF}$

Figure S37. Size distribution histograms of Pt nanoparticles on Pt/MWCNT_{THF} before and after model reaction with different silanes.

After the hydrosilylation of tolane by HSiCl₃ in the presence of Pt/C

After the hydrosilylation of tolane by HSiEt₃ in the presence of Pt/C

After the hydrosilylation of tolane by $HSiPh_3$ in the presence of Pt/C

Figure S38. Size distribution histograms of Pt nanoparticles on Pt/C before and after model reaction with different silanes.

S24

Figure S39. Size distribution histograms of Pt nanoparticles on Pt/MWCNT_{THF} and Pt/C before and after allyl bromide hydrosilylation with $HSiCl_3$.

Hydrosilylation of tolane in the presence of Pt₂dba₃

A comparative study on the catalytic activity of the Pt_2dba_3 complex and premixed system was carried out. In four separate experiments, $Pt/MWCNT_{THF}$, Pt_2dba_3 with MWCNT, Pt_2dba_3 , and MWCNT were used as catalysts in the model reaction (Table S4).

Ph +	HSiCl ₃	0.1 mol % [Pt] Toluene, 3h, 100 °C	► Ph H SiCl ₃
1a	2a		E-3aa
Entry	Cataly	st	Yield, % ^a
1	Pt/MV	VCNT _{THF}	42
2	Pt ₂ dba	a ₃ , MWCNT	77
3	Pt ₂ dba	a ₃	98
4	MWC	NT	0

Table S4. Model reaction in the presence of the Pt₂dba₃

^a Yield of the products were determined by GC-MS.

 Pt_2dba_3 and Pt_2dba_3 , MWCNT worked as homogeneous catalysts (entries 2 and 3, Table S4) and gave yields higher than heterogeneous $Pt/MWCNT_{THF}$.

Characterization data

Table S5. Numbering of products of $Pt/MWCNT_{THF}$ and Pt/C-catalyzed hydrosilylation of internal alkynes using different silanes. Reaction conditions are summarized in Table S1.

R	R + HSiR' ₃	[Pt]	R SiR'3
R = Ph (1	a), Et (1b)		Н
R' = Cl (2 a	a), Et (2b), Ph (2c)	E-3
Entry	Alkyne, R	Silane, R'	Product
1	Ph	Cl	3aa
2	Et		3ba
3	Ph	Et	3ab
4	Et		3bb
5	Ph	Ph	3ac
6	Et		3bc

Table S6. Numbering of products of $Pt/MWCNT_{THF}$ and Pt/C-catalyzed hydrosilylation of terminal alkynes using different silanes. Reaction conditions are summarized in Table S1.

Entry	Alkyne	Silane	Product distribution, %	
			Pt/MWCNT _{THF}	Pt/C
	R	R'	3:4:5	3:4:5
1	Ph	Cl	4ca	4ca
2	n-Bu		4da	4da
3	TMS		4ea	4ea
4	Ph	Et	3cb : 4cb	3cb : 4cb
5	n-Bu		3db : 4db : 5db	3db : 4db : 5db
6	TMS		3eb:4eb	3eb:4eb
7	TMS	Ph	3ec:4ec	3ec:4ec

The obtained vinylsilanes were identified by ¹H and ¹³C{¹H} NMR according to the published data for **3aa**, ³ **3ba**, ³ **3ab**, ³ **3bb**, ³ **3cb**, ³ **3db**, ³ **4ca**, ³ **4cb**, ³ **4da**, ³ **4db**, ³ **4ea**, ³ **4eb**, ³ **3ec**, ⁴ **4ec**, ⁴ **3ac**, ⁵ **3eb**, ⁶ **5db**⁷. All products were also checked by GC-MS (EI). Spectral data for **4bc** were not found in the literature, and the characterization is provided below.

Ph₃Si (E)-hex-3-en-3-yltriphenylsilane (**3bc**). Yield: 57 %.

¹H NMR (300 MHz, CDCl3): δ 7.75 – 7.57 (m, 6H), 7.57 – 7.34 (m, 9H), 6.05 (t, J = 7.0 Hz, 1H), 2.35 (dt, J = 8.7, 7.5 Hz, 4H), 1.09 (t, J = 7.5 Hz, 3H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl3): δ 148.83, 136.45, 135.98, 135.06, 130.20, 129.30, 128.00, 127.72, 23.20, 22.22, 14.87, 14.14. GC-EI, m/z (relative intensity): 342 [M+, 261], 313(100), 264 (227), 260 (249), 259 (999), 235 (184), 183 (294), 181 (284), 180 (101), 105 (117).

References

- 1 E. O. Pentsak and V. P. Ananikov, *Russ. Chem. Bull.*, 2014, **63**, 2560–2563.
- 2 C. G. Baumann, S. De Ornellas, J. P. Reeds, T. E. Storr, T. J. Williams and I. J. S. Fairlamb, *Tetrahedron*, 2014, **70**, 6174–6187.
- 3 M. Chauhan, B. J. Hauck, L. P. Keller and P. Boudjouk, J. Organomet. Chem., 2002, 645, 1–13.
- J. Fotie, M. Enechojo Agbo, F. Qu and T. Tolar, *Tetrahedron Lett.*, 2020, **61**, 152300.
- 5 A. Rivera-Hernández, B. J. Fallon, S. Ventre, C. Simon, M.-H. Tremblay, G. Gontard, E. Derat, M. Amatore, C. Aubert and M. Petit, *Org. Lett.*, 2016, **18**, 4242–4245.
- 6 X. Zhang, X. Ji, X. Xie and S. Ding, *Chem. Commun.*, 2018, **54**, 12958–12961.
- 7 X. Zhao, D. Yang, Y. Zhang, B. Wang and J. Qu, Org. Lett., 2018, 20, 5357–5361.