Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Probing the morphological effects of ReO_x/CeO₂ catalysts on CO₂ hydrogenation reaction

Bin Yang ^{a,b,c}, Yifu Wang ^c, Longtai Li ^c, Biao Gao ^c, Lingxia Zhang ^{a,b*} and Limin Guo ^{c*}

^a School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane

Xiangshan, Hangzhou 310024, China;

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of

Sciences, 1295 Dingxi Road, Shanghai 200050, China;

° School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;

Fig. S1. HRTEM images of (a) CeO₂-R, (b) CeO₂-C and (c) CeO₂-P supports.

Fig. S2. (a) XRD patterns of $\text{ReO}_x/\text{CeO}_2$ -R, $\text{ReO}_x/\text{CeO}_2$ -C and $\text{ReO}_x/\text{CeO}_2$ -P. (b) Raman spectra of $\text{ReO}_4^-/\text{CeO}_2$ -R, $\text{ReO}_4^-/\text{CeO}_2$ -C and $\text{ReO}_4^-/\text{CeO}_2$ -P.

Fig. S3. Deconvolution of XPS spectra of (a) Ce 3d and (b) Re 4f of ReO₄-/CeO₂-R, ReO₄-/CeO₂-C and ReO₄-/CeO₂-P.

Fig. S4.H₂-TPR of CeO₂-R, CeO₂-P and CeO₂-C.

Fig. S5. EPR spectra of the catalysts.

Fig. S6. The effect of pressure on CO₂ conversion on $\text{ReO}_x/\text{CeO}_2$ -R, $\text{ReO}_x/\text{CeO}_2$ -C and $\text{ReO}_x/\text{CeO}_2$ -P at 613 K, CO_2/H_2 =1/3 and GHSV=12000 mL/g h.

Fig. S7. The effect of GHSV on CH_4 selectivity on ReO_x/CeO_2 -R, ReO_x/CeO_2 -C and ReO_x/CeO_2 -P at 613 K, $CO_2/H_2 = 1/3$ and 2 MPa.

Fig. S8. Temperature-dependent performance of (a) ReO_x/CeO_2 -R, (b) ReO_x/CeO_2 -C and (c) ReO_x/CeO_2 -P. The left vertical axis is CO_2 conversion and the right is the formation rate of products.

Fig. S9. Arrhenius plots for CH₄ generation on ReO_x/CeO₂-R, ReO_x/CeO₂-C and ReO_x/CeO₂-P.

Fig. S10. Infrared spectra recorded under Ar flushing after CO_2+H_2 reaction at 633 K and 0.1 MPa. (a) ReO_x/CeO_2-R , (b) ReO_x/CeO_2-C and (c) ReO_x/CeO_2-P .

Fig. S11. TPD of HCOOH over (a) ReO_x/CeO₂-C, ReO_x/CeO₂-P and ReO_x/CeO₂-R, (b) CeO₂-C, CeO₂-P and CeO₂-R.

Fig. S12. Temperature-dependent infrared analysis of CO₂ hydrogenation after exposing the catalysts to CO₂+H₂ at 493 K and subsequently heating to 633 K. (a) ReO_x/CeO₂-R, (b) ReO_x/CeO₂-C and (c) ReO_x/CeO₂-P.

Table S1. Assessment of extraparticle mass transfer limitations in CO₂ hydrogenation over catalysts.

Parameter	F	ReO _x /CeO ₂ -	R	R	eO_x/CeO_2 -	C.	R	eO _x /CeO ₂ -I	
P(MPa)	2	2	2	2	2	2	2	2	2
T(K)	613	613	613	613	613	613	613	613	613
Particle size (µm)	25-45	25-45	25-45	25-45	25-45	25-45	25-45	25-45	25-45
W _{cat} (g)	0.05	0.1	0.2	0.05	0.1	0.2	0.05	0.1	0.2
H ₂ : CO ₂ : Ar (cm ³ /min)	36:12:2	72:24:4	144:48:8	36:12:2	72:24:4	144:48:8	36:12:2	72:24:4	144:48 :8
$CO_2(10^{-5} \text{ mol/}g_{Re} \text{ s})$	14.95	15.60	15.82	1.94	1.90	2.01	1.25	1.31	1.41

Table S2. Assessment of intraparticle mass transfer limitations in CO₂ hydrogenation over catalysts.

Parameter	F	ReO _x /CeO ₂ -	R	R	eO_x/CeO_2 -0	С.	R	eO _x /CeO ₂ -I)
P(MPa)	2	2	2	2	2	2	2	2	2
T(K)	613	613	613	613	613	613	613	613	613
Particle size (µm)	≤25	25-45	125-300	≤25	25-45	125-300	≤25	25-45	125- 300
W _{cat} (g)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
H ₂ : CO ₂ : Ar (cm ³ min ⁻¹)	72:24:4	72:24:4	72:24:4	72:24:4	72:24:4	72:24:4	72:24:4	72:24:4	72:24: 4
$CO_2(10^{-5} \text{ mol}/g_{Re} \text{ s})$	15.94	15.60	15.13	1.96	1.90	1.86	1.39	1.31	1.32

Table S3. Structural parameters of the samples

	Re (wt%)-XRF	Re (wt%)-XPS	$S_{BET}(m^2/g)$	Pore volume (cm ³ /g)
ReO _x /CeO ₂ -R	1.97	2.21	109.06	0.32
ReO _x /CeO ₂ -C	1.98	2.02	38.24	0.16
ReO _x /CeO ₂ -P	1.98	2.31	34.39	0.19

Table S4. (1) Infrared band assignments of the surface species on $\text{ReO}_x/\text{CeO}_2$ -C.

Surface species	Wavenumber (cm ⁻¹)	assignment
Carbonate	1398	v _s (O-C-O)
	1512	$v_{as}(O-C-O)$
Carboxylate	1289	$v_{s}(O-C-O)$
CO bond	2007	linearly bound
	1892	bridge bound
Formate	2948, 2853	ν(CH)
	1631	v_{as} (O-C-O)
Methoxyl	1096	$\nu_{(CO)}$ of terminal of
		bridged-OCH ₃
Methane	3019	ν(CH)

(2) Infrared band assignments of the surface species on $\text{ReO}_x/\text{CeO}_2$ -R.

8	1 A 2	
Surface species	Wavenumber (cm ⁻¹)	assignment
Carboxylate	1289	v _s (O-C-O)
CO bond	2007, 1912	linearly bound
	1892	bridge bound
Formate	2948, 2853	ν(CH)
	1594	v_{as} (O-C-O)
Methoxyl	1096,1157	$\nu_{(CO)}$ of terminal of bridged-
		OCH ₃
Methane	3019	v(CH)

(3) Infrared band assignments of the surface species on $\text{ReO}_x/\text{CeO}_2$ -P.

/		··· -	
	Surface species	Wavenumber (cm ⁻¹)	assignment
	Carbonate	1398	v _s (O-C-O)
		1512	$v_{as}(O-C-O)$
	Carboxylate	1289	v _s (O-C-O)
	CO bond	2007	linearly bound
		1892	bridge bound
	Formate	2948, 2853	v(CH)
		1617,1594	v_{as} (O-C-O)
	Methoxyl	1096	$v_{(CO)}$ of terminal of
			bridged-OCH ₃
	Methane	3019	ν(CH)