Selective continuous synthesis of bis(2dimethylaminoethyl)ether over Cr and Co modified Cu/Al₂O₃ catalyst

Yuyao Zeng,^{a,b}, Bowei Wang^{*a,b,c}, Wensheng Xu^a, Xilong Yan,^{a,b,c}, Yang Li,^{a,b,c}, Guoyi Bai^d

and Ligong Chen^{*a,b,c}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350,

People's Republic of China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin 300072, People's Republic of China.

^c Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, People's

Republic of China.

^d Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and

Environmental Science, Hebei University, Baoding 071002, People's Republic of China.

* Corresponding authors: bwwang@tju.edu.cn (Bowei Wang); lgchen@tju.edu.cn

(Ligong Chen).

Figure S1 XRD pattern of prepared CoCr₂O₄.

Figure S2 XRD patterns of reduced co-doped Cu-based catalysts.

Figure S3 SEM images of reduced (A) Cu/Al_2O_3 , (B) $Cu-Cr-Co/Al_2O_3$ (C) $Cu-Cr-Co/Al_2O_3$ and (D) used $Cu-Cr-Co/Al_2O_3$.

Figure S4 TEM images of unreduced (a) Cu/Al_2O_3 , (b) $Cu-Cr/Al_2O_3$, and (c) $Cu-Cr-Co/Al_2O_3$; selected area electron diffraction (SAED) patterns of unreduced (d) Cu/Al_2O_3 , (e) $Cu-Cr/Al_2O_3$, and (f) $Cu-Cr-Co/Al_2O_3$.

Figure S5 EDS spectrum of reduced Cu-Cr-Co/Al₂O₃.

Catalant	Cu Content ^a	D _{Cu} ^b	S _{Cu} ^b	Acid	ol/g)	TOF		
Catalyst	(%)	(%)	(m^2/g)	Weak	M-strong	S-strong	Total	- (h ⁻¹)
Cu/Al ₂ O ₃	19.75	10.5	13.5	0.31	0.74	0.19	1.24	1.9
Cu-Cr/Al ₂ O ₃	18.86	12.5	15.3	0.34	0.68	-	1.02	2.2
Cu-Cr-Co/Al ₂ O ₃	17.87	17.8	20.6	0.36	0.77	-	1.13	3.3
Cu-Cr-Fe/Al ₂ O ₃	19.01	14.1	17.4	0.29	0.58	-	0.87	2.5
Cu-Cr-Ni/Al ₂ O ₃	18.75	14.9	18.1	0.27	0.56	-	0.83	2.4
Cu-Cr-Zn/Al ₂ O ₃	17.91	17.1	19.9	0.30	0.66	-	0.96	2.9

Table S1. Cu dispersion and acidic sites concentration of Cu-based catalysts.

^a Determined by ICP-OES.

^b Determined by N₂O chemisorption.

^c Determined by NH₃-TPD.

Figure S6 XPS spectra of calcined catalysts. (A) Cu 2p, (B) Cr 2p, (C) Co 2p and (D) survey spectra.

Catalyata		B.E. (eV)	$X_{Cu(0)/(Cu(I)+Cu(0))}$	
Catalysis	Cu 2p _{3/2}	Cr 2p _{3/2}	Co 2p _{3/2}	(%)
Calcined Cu/Al ₂ O ₃	934.4	-	-	-
Calcined Cu-Cr/Al ₂ O ₃	934.0	576.6	-	-
Calcined Cu-Cr-Co/Al ₂ O ₃	934.0	576.2	780.5	-
Reduced Cu/Al ₂ O ₃	932.1	-	-	63.6
Reduced Cu-Cr/Al ₂ O ₃	931.8	576.7	-	89.0
Reduced Cu-Cr-Co/Al ₂ O ₃	931.8	576.2	780.5	92.3

Table S2 XPS Peaks position of Cu-based catalysts.

Table S3 Structural properties and chemical compositions of catalysts.

Catalysta	Metal loading ^a (%)		$\mathbf{S}_{\text{BET}}^{b}$	$V_p^{\ b}$	$d_p^{\ b}$	Acid sites ^c (mmol/g)		Cu partic	le sizes (nm)		
Catalysis	Cu	Cr	Co	(m^{2}/g)	(cm^{3}/g)	(nm)	LA ^d	BA ^e	Total	XRD ^f	TEM ^g
Cu/Al ₂ O ₃	19.75	-	-	150.0	0.32	8.4	0.0873	0.0138	0.1011	24.3	27.7
Cu-Cr/Al ₂ O ₃	18.86	6.11	-	112.6	0.33	10.7	0.0652	0.0114	0.0766	18.4	16.1
Cu-Cr-Co/Al ₂ O ₃	17.87	6.54	4.06	124.8	0.35	11.1	0.0817	0.0139	0.0956	17.9	15.3

^a Determined by ICP-OES.

 $^{\rm b}$ Determined by N_2 adsorption.

^c determined by pyridine-FTIR.

^d Lewis acidic sites.

_

^e Brønsted acidic sites.

^f determined by Scherrer equation.

^g determined by TEM.

Figure S7 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution of catalysts.

Figure S8 Mass spectra of the products in reaction mixture.

Temperatur	DEG		Selectivity	_		
e	Conversion	DMAEE		NINANA	Other	BDMAEE/NMM
(°C)	(%)	DMAEE	BDMAEE	INIVIIVI	Other	
150	39.7	84.0	4.6	6.4	5.0	0.7
170	97.9	27.9	21.7	42.0	8.4	0.5
190	99.6	9.1	55.2	26.7	9.0	2.1
210	99.5	4.5	37.8	29.2	28.5	1.3

Table S4 Reaction of DEG with dimethylamine over different temperature.

Reaction conditions: Catalyst, Cu-Cr-Co/Al₂O₃; DMA/DEG (molar ratio) = 4:1; H₂ pressure, 3 MPa; LHSV, 0.3 h⁻¹; Solvent, Methanol.

Table S5 Reaction of DEG with DMA over different H₂ pressure.

	DEG		Selectivity	r (%)		
(MPa)	Conversion (%)	DMAEE	BDMAEE	NMM	Other	BDMAEE/NMM
2	99.7	13.1	28.9	47.4	10.6	0.6
3	99.6	9.1	55.2	26.7	9.0	2.1
4	99.8	10.4	56.1	27.3	6.2	2.1

Reaction conditions: Catalyst, Cu-Cr-Co/Al₂O₃; DMA/DEG (molar ratio) = 4:1; Temperature, 190 °C; LHSV, 0.3 h⁻¹; Solvent, Methanol.

	DEG		Selectivity	/ (%)		_
(molar ratio)	Conversion (%)	DMAEE	BDMAEE	NMM	Other	BDMAEE/NMM
2:1	87.8	21.3	16.8	57.2	4.7	0.3
3:1	99.1	16.9	44.6	29.9	8.6	1.5
4:1	99.6	9.1	55.2	26.7	9.0	2.1
5:1	99.5	8.9	55.0	27.8	8.3	2.0

Table S6 Reaction of DEG with DMA over different substrate molar ratio.

Reaction conditions: Catalyst, Cu-Cr-Co/Al₂O₃; Temperature, 190 °C; H₂ pressure, 3 MPa; LHSV, 0.3 h⁻¹; Solvent, Methanol.

Table S7 Comparison studies on catalytic performance toward DEG amination with DMA over reported catalysts

Entry	Catalyst	DMA/DEG (molar)	Temperatur e (°C)	Time (h)	BDMAEE yield (%)	Reference
1	Cu-Cr-Co/Al ₂ O ₃ (Cu 20wt.%)	4	190	Continuous	55	This work
2	Cu/Al ₂ O ₃ (Cu 55wt.%)	-	210	Continuous	~40	1
3	IrH ₂ Cl[(ⁱ Pr ₂ PC ₂ H ₄) ₂ NH]	3	140	20	~15	2
4	NHC-Ir	6	120	40	55	3

Figure S9 XRD patterns of fresh and spent Cu-Cr-Co/Al₂O₃ catalysts.

Figure S10 TEM image of spent Cu-Cr-Co/Al₂O₃.

-	-		-		
Catalyst	Metal loading (%)				
Catalyst	Cu	Cr	Со		
Fresh Cu-Cr-Co/Al ₂ O ₃	17.87	6.54	4.06		
Spent Cu-Cr-Co/Al ₂ O ₃	17.63	6.41	3.97		

Table S8 Metal loading of the fresh and spent Cu-Cr-Co/Al₂O₃ catalysts determined by ICP-OES

Figure S11 (a) XPS survey, (b) Cu 2p, (c) Cr 2p, (d) Co 2p and (e) N 1s spectra of fresh and spent Cu-Cr-Co/Al₂O₃ catalysts.

Figure S12 FT-IR spectra of fresh and spent Cu-Cr-Co catalysts. ~2870 cm⁻¹ for v_{C-H} , 1460 cm⁻¹ for δ_{C-H} , ~1125-1070 cm⁻¹ for v_{C-N} .

Figure S13 NH₃-TPD profiles of fresh and spent Cu-Cr-Co/Al₂O₃ catalysts.

Figure S14 (a) TG spectra of fresh and spent Cu-Cr-Co/Al₂O₃ catalysts and (b) selected MS ion intensity curves and TG spectrum spent Cu-Cr-Co/Al₂O₃ catalysts.

- 1. WO2010031719, 2015.
- N. Andrushko, V. Andrushko, P. Roose, K. Moonen and A. Börner, *ChemCatChem*, 2010, 2, 640-643.
- 3. J. Jeong and K.-i. Fujita, *ChemCatChem*, 2021, DOI: 10.1002/cctc.202101499.