Supporting Information

Direct Synthesis of Higher Alcohols from Syngas over Modified

Mo₂C Catalysts under Mild Reaction Conditions

Caiqi Wang^{a,b}, Hailing Yu^{a,b}, Tiejun Lin^a, Xingzhen Qi^{a,b}, Fei Yu^a, Liangshu Zhong^{a,c,*}, Yuhan Sun^{a,c,*}

^a CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P.R. China

^b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China

^c School of Physical Science and Technology, ShanghaiTech University, Shanghai
201203, P.R. China

* Corresponding author.

E-mail: zhongls@sari.ac.cn (L. Zhong), sunyh@sari.ac.cn (Y. Sun).

Content (wt%)				
Rh	Κ	Mo		
-	-	74.5		
1.8	-	73.5		
1.6	4.8	70.3		
-	5.2	71.4		
	Rh - 1.8 1.6 -	Content (w Rh K - - 1.8 - 1.6 4.8 - 5.2	Content (wt%) Rh K Mo - - 74.5 1.8 - 73.5 1.6 4.8 70.3 - 5.2 71.4	

Table S1 The element content of various catalysts determined by ICP-OES.

Table S2 The catalytic performances for syngas conversion over Rh/AC and RhK/AC catalysts.

Catalysts	CO	CO_2	Selectivity (C%, free of CO_2)				
	Conversion %	Selectivity	CH ₃ OH	C ₂₊ Oxy	Olefins	CH_4	C ₂₊ Alkane
Rh/AC	1.3	11.8	10.5	20.2	5.0	45.0	19.3
RhK/AC	4.5	25.0	74.1	5.0	2.2	14.9	3.8
	1				1000 T	1 1 1	

Reaction conditions: 290 °C, $H_2/CO = 1$, 3 MPa, GHSV = 1200 mL·g⁻¹·h⁻¹.

Figure S1 TEM and HAADF-STEM images of the reduced catalysts. (a, b) Rh/Mo₂C, (c, d) RhK/Mo₂C.

Figure S2 TEM images of the spent catalysts. (a) Rh/Mo₂C, (b) RhK/Mo₂C.

Figure S3 Elemental mapping of C and O for spent Rh/Mo₂C (a, b) and

RhK/Mo₂C (c, d) catalysts.

Figure S4 In situ DRIFTs of CO adsorption from 0.1 to 0.5 MPa at 50 $^\circ$ C over Rh/Mo₂C (a) and RhK/Mo₂C (b) catalysts.

Figure S5 Dependence of CO consumption rate on WHSV. (Conditions: H₂/CO=1, 290 °C, 1 MPa, 0.4 g of catalyst diluted with 2 g quartz)

For kinetic study, the diffusion effects were excluded by adjusting the WHSV over RhK/Mo₂C catalyst. With the increase of WHSV from 1500 to 7500 mL·g_{cat.}⁻¹·h⁻¹ (Figure S5), CO consumption rate increased and then remained almost constant when WHSV reached 6000 mL·g_{cat.}⁻¹·h⁻¹, demonstrating a negligible effect on mass-transfer diffusion when WHSV was higher than 6000 mL·g_{cat.}⁻¹·h⁻¹. In the kinetic study, WHSV of 7500 mL·g_{cat.}⁻¹·h⁻¹ was used to avoid the effect of mass transfer. In addition, to exclude the effect of heat transfer, 0.4 g of catalyst was diluted with 2 g quartz sand to remove the reaction heat.

Figure S6 Rh 3d XPS spectra of (a) Rh/AC, (b) RhK/AC after reduction in syngas flow.

Figure S7. TEM image of the spent RhK/AC catalyst.

Figure S8. HAADF-STEM image and the corresponding EDS elemental

mapping images of the spent RhK/AC catalyst.

Figure S9. TEM image of the spent Rh/AC catalyst with size distribution of Rh nanoparticles.