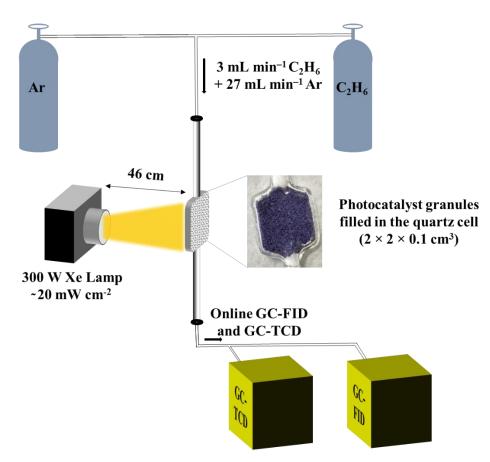
Supplementary Information

Nonoxidative coupling of ethane with gold loaded photocatalysts

Surya Pratap Singh,^a Akira Yamamoto,^{a,b} and Hisao Yoshida^{a,b,*}

^{*a*} Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.

^b Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto


University, Kyoto 615-8245, Japan

* Corresponding author: yoshida.hisao.2a@kyoto-u.ac.jp

1 Experimental

1.1 Experimental set-up

The schematic experimental set-up used in the reaction test of photocatalytic direct ethane conversion is shown in Figure S1. A flow reactor similar to our previous works^{1,2} was used in this study.

Figure S1 The schematic diagram of the experimental set-up used in the reaction test of photocatalytic ethane conversion, which is similar to our previous work. Inset: the photograph of the quartz sample cell filled with the granules of the Au(0.4)/TiO₂ sample. The size of the sample cell was $2 \times 2 \times 0.1$ cm³.

1.2 Spectral output of the xenon lamp

The spectral output of the Xe-lamp is shown in Figure S2. The lamp emits continuous light in the wavelength range of 200–800 nm with varying photon output in agreement with the uncorrected Xe-lamp spectrum reported in literature.^{3,4}

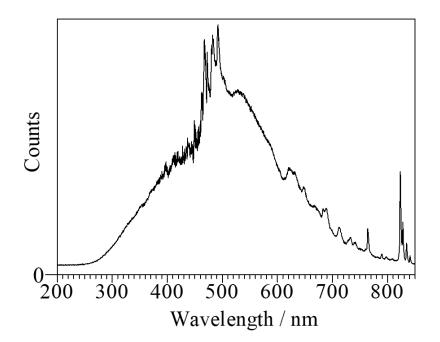


Figure S2 Spectral output of the Xe-lamp.

1.3 Calculations

1.3.1 Yield

The yield of hydrocarbons in the reaction is calculated based on the eq. 1, 2 and 5 in the main text as shown in eq. S1.

$$Yield (\%) = \frac{Consumption \ rate \ of \ ethane \ (2 \times R_{C4H10} + R_{C2H4} + R_{CH4})}{Introduction \ rate \ of \ ethane} \times 100$$
(S1)

1.3.2 Selectivity

The product selectivity based on ethane toward *n*-butane and ethene are calculated as shown in eq. S2 and S3, respectively.

$$S_{C4H10} (\%) = \frac{2 \times R_{C4H10}}{2 \times R_{C4H10} + R_{C2H4} + R_{CH4}} \times 100$$
(S2)

$$S_{C2H4} (\%) = \frac{R_{C2H4}}{2 \times R_{C4H10} + R_{C2H4} + R_{CH4}} \times 100$$
(S3)

1.3.3 R value

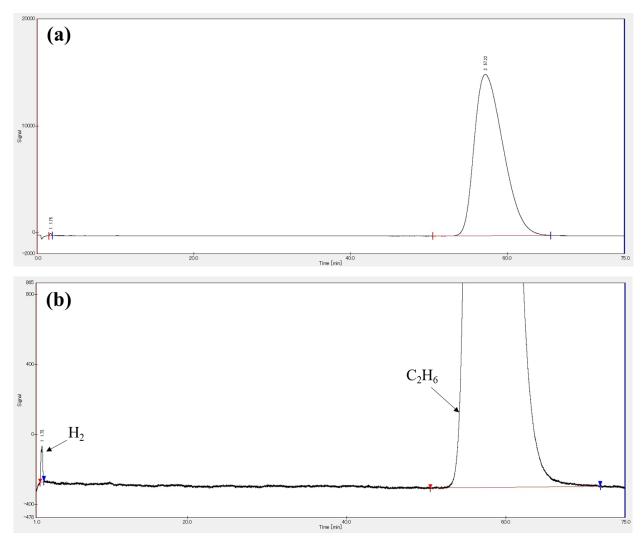
The ratio of the obtained hydrocarbons and hydrogen, $R_{HC/H2}$ is defined as follows (eq. S4).

$$R_{HC/H2} = \frac{R_{C4H10} + R_{C2H4} - R_{CH4}}{R_{H2}}$$
(S4)

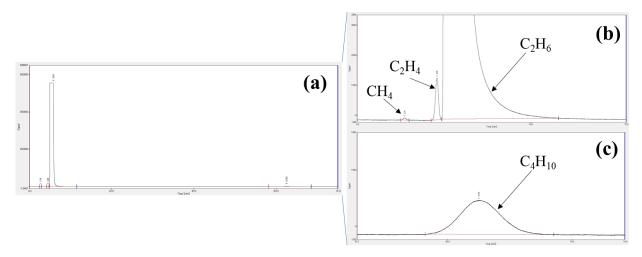
where R_{C4H10} , R_{C2H4} , R_{CH4} , and R_{H2} are the production rates of *n*-butane, ethene, methane, and hydrogen, respectively.

1.3.4 Apparent quantum efficiency (AQE)

The apparent quantum efficiency (AQE) was calculated by the following equation as the ratio of the number of consumed holes for the n-butane formation (or ethene formation) and the number of incident photons.⁵


$$AQE (\%) = \frac{r \times n \times N}{(I \times A)/(hc/\lambda)} \times 100$$
(S5)

where r = production rate of C₄H₁₀ (or C₂H₄) (in mol s⁻¹), n = number of holes consumed for the production of C₄H₁₀ (or C₂H₄) (n=2), N = Avogadro constant (in mol⁻¹), I = intensity of the incident light estimated in the wavelength range of 200–420 nm (from the measured value in the wavelength range of 220–300 nm by a UV radiometer and the DR UV-vis absorption spectrum) (in W cm⁻²), A = Area of the reactor (in cm²), h = Planck's constant (in J s), c = speed of light (in m s⁻¹), λ = wavelength of incident light (in m).


2 Results and discussion

2.1 GC-TCD and GC-FID chromatograms

The chromatograms of the GC-TCD and the GC-FID after 1.5 h of the photocatalytic reaction test over the Au(0.4)/TiO₂ sample are shown in Figure S3 and Figure S4, respectively.

Figure S3 GC-TCD chromatograms, (a) original and (b) magnified, after 1.5 h of the reaction test of photocatalytic direct ethane conversion over the $Au(0.4)/TiO_2$ sample. GC-TCD was used to analyze mainly hydrogen. The peaks of hydrogen (retention time = 1.7 min) and ethane (57 min) can be seen distinctively and were well separated.

Figure S4 GC-FID chromatogram, (a) original and (b-c) magnified, after 1.5 h of the reaction test of photocatalytic direct ethane conversion over the $Au(0.4)/TiO_2$ sample. The GC-FID was used to analyze mainly the hydrocarbons. The peaks of methane (2.8 min), ethene (4.6 min), ethane (5.9 min), and *n*-butane (62 min) can be seen distinctively and were well separated. No *i*-butane (48 min) was detected.

2.2 DR UV-vis spectrum of Al₂O₃

The DR UV-vis spectrum of the bare Al_2O_3 sample is shown in Figure S5. A small absorption was observed in the wavelength range of 200–350 nm.

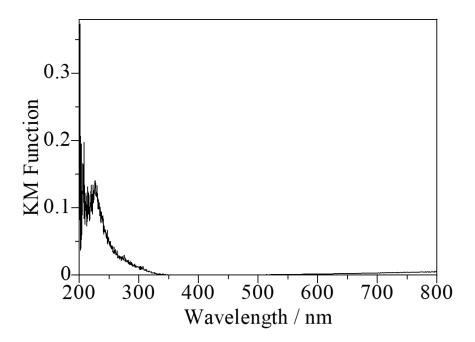


Figure S5 DR UV-vis spectra of the bare Al₂O₃ sample.

2.3 Estimation of loading amount of Au in the $Au(x)/TiO_2$ samples

The actual loading amounts of Au determined by the XRF analysis in various $Au(x)/TiO_2$ samples are given in Table S1.

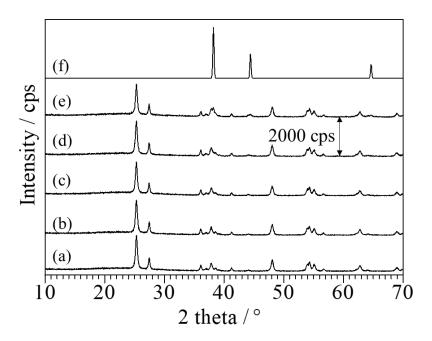

S. No.	Sample ^a	Loading amount of Au (mol %) ^b	
1	Au(0.1)/TiO ₂	0.08	
2	Au(0.2)/TiO ₂	0.18	
3	Au(0.4)/TiO ₂	0.42	
4	Au(1.0)/TiO ₂	1.04	

Table S1 Loading amount of Au in Au(x)/TiO₂ samples

^{*a*} The samples were prepared by the photodeposition method. ^{*b*} Determined by XRF.

2.4 XRD patterns of Au/TiO₂ samples

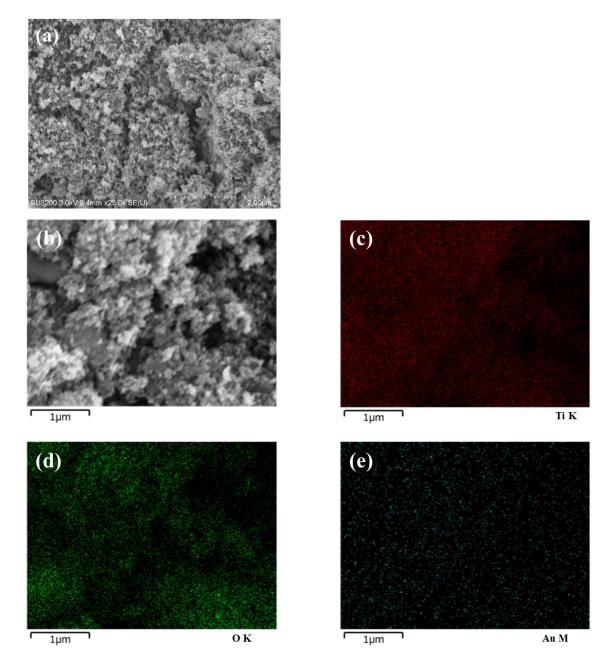

XRD patterns of the TiO_2 and various Au/TiO_2 samples are shown in Figure S6. The lines derived from Au nanoparticles were evident for the Au(1.0)/TiO_2 sample.

Figure S6 XRD patterns of the samples, (a) TiO_2 , (b) $Au(0.1)/TiO_2$, (c) $Au(0.2)/TiO_2$, (d) $Au(0.4)/TiO_2$, (e) $Au(1.0)/TiO_2$, and (f) Au from the database (ICSD#52249).

2.5 SEM images and EDX elemental mappings

Figure S7 shows SEM images and elemental mappings. In the TiO_2 sample, no regular shape of TiO_2 particles could be seen and the agglomeration of nanoparticles was observed (Figure S7a). In the Au(0.4)/TiO_2 sample, the morphology did not change much and the Au nanoparticles were dispersed on the TiO_2 surface (Figure S7 b-e).

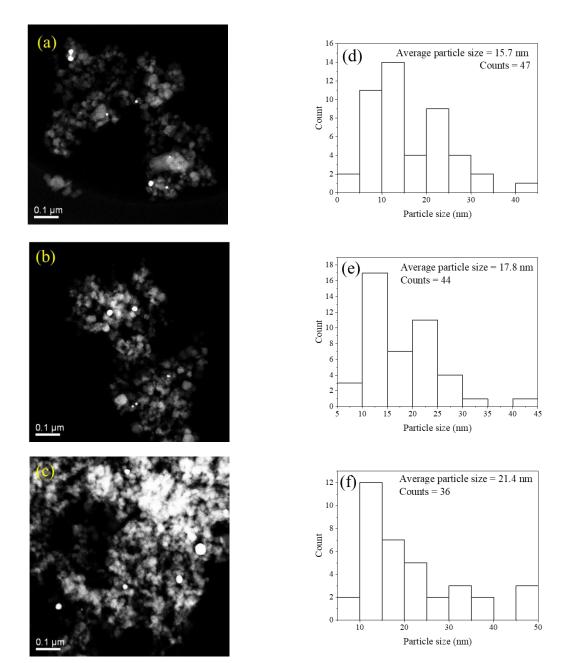


Figure S7 (a) SEM image of the bare TiO_2 sample, and (b) the SEM image and (c-e) elemental mappings of the Au(0.4)/TiO₂ sample.

2.6 STEM images and particle size distribution of Au nanoparticles in the Au/TiO₂

samples

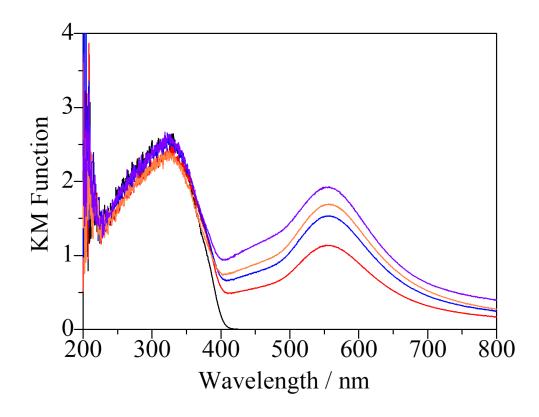

The STEM images and the particle size distribution of Au nanoparticles in the Au(0.1)/TiO₂, Au(0.2)/TiO₂, and Au(1.0)/TiO₂ samples are shown in Figure S8. With an increase in the loading amount of Au, the particle size of Au nanoparticles is increased in the Au/TiO₂ samples.

Figure S8 STEM images (a–c) and particle size distribution of Au nanoparticles (d–f) in the $Au(0.1)/TiO_2$, $Au(0.2)/TiO_2$, and $Au(1.0)/TiO_2$ samples.

2.7 DR UV-vis spectra of Au/TiO₂ samples

The DR UV-vis spectra of various Au/TiO₂ samples are shown in Figure S9. An additional broad band cantered at 550 nm due to the LSPR of Au nanoparticles was observed in the DR UV-vis spectra of the Au/TiO₂ samples. The intensity of this band increased with an increase in the loading amount of Au, where a slight red shift was observed.

Figure S9 DR UV-vis spectra of the samples; TiO_2 (black line), $Au(0.1)/TiO_2$ (red line), $Au(0.2)/TiO_2$ (blue line), $Au(0.4)/TiO_2$ (orange line), and $Au(1.0)/TiO_2$ (violet line).

2.8 Effect of thermal energy in the dark

Catalytic reaction tests in dark at various temperatures were carried out with the $Au(0.4)/TiO_2$ and $Au(0.4)/Ga_2O_3$ samples and the results are given in Table S2 and Table S3, respectively.

Entry	Temperature	Production rates ^b / µmol h ⁻¹					
	(К)	C_4H_{10}	C_2H_4	CH_4	C_3H_6	H ₂	
1	323	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
2	373	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
3	423	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
4	473	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
5	523	nd ^c	0.026	0.22	nd ^c	0.48	
6	573 ^d	nd ^c	0.025	0.28	trace ^e	1.1	
7	623 ^d	nd ^c	0.23	0.27	trace ^e	1.9	
8	673 ^d	nd ^c	3.3	0.38	trace ^e	7.1	
9	723 ^d	nd ^c	23.5	0.82	trace ^e	31.2	

Table S2 Effect of increasing the temperature in dark with the $Au(0.4)/TiO_2$ sample^a

^{*a*}Other reaction conditions were same as those described in the footnote *a* of Table 1 in the main text. ^{*b*}Production rates were measured after 1.5 h at each temperature. ^{*c*}nd = not detected. ^{*d*}Small amount of CO was also observed. ^{*e*}The amount of the product was less than 0.01 µmol h⁻¹.

Entry	Temperature	Production rates ^b / μmol h ^{−1}					
	(К)	C_4H_{10}	C_2H_4	CH_4	C_3H_6	H ₂	
1	323	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
2	373	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
3	423	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
4	473	nd ^c	nd ^c	nd ^c	nd ^c	nd ^c	
5	523	nd ^c	trace ^d	0.07	nd ^c	0.17	
6	623 ^e	nd ^c	8.4	0.10	trace ^d	10.2	
7	673 ^e	nd ^c	126.2	0.11	trace ^d	128.8	

Table S3 Effect of increasing the temperature in dark with the Au(0.4)/Ga₂O₃ sample^{*a*}

^{*a*}Other reaction conditions were same as those described in the footnote *a* of Table 1 in the main text. ^{*b*}Production rates were measured after 1.5 h at each temperature. ^{*c*}nd = not detected. ^{*d*}The amount of the product was less than 0.01 µmol h⁻¹. ^{*e*}Small amount of CO was also observed.

References

- 1 S. P. Singh, A. Anzai, S. Kawaharasaki, A. Yamamoto and H. Yoshida, *Catal. Today*, 2021, **375**, 264–272.
- S. P. Singh, A. Yamamoto, E. Fudo, A. Tanaka, H. Kominami and H. Yoshida, *ACS Catal.*, 2021, 11, 13768–13781.
- 3 S. Rolt, P. Clark, J. Schmoll and B. J. R. Shaw, *Sp. Telesc. Instrum. 2016 Opt. Infrared, Millim. Wave*, 2016, **9904**, 99044V.
- 4 Y. Lu, Z. Shen and Y. Zhou, J. Opt. Technol., 2013, **80**, 474.
- 5 M. Ishimaru, F. Amano, C. Akamoto and S. Yamazoe, J. Catal., 2021, **397**, 192–200.