Appendix A. Supplementary data

Understanding the role of redox property and NO adsorption over MnFeO_x for NH₃-SCR

Qian Xu, Zengyuan Li, Li Wang*, Wangcheng Zhan, Yanglong Guo, Yun Guo

Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

* Corresponding Author: Fax: +86-21-64252923, E-mail: <u>wangli@ecust.edu.cn</u> (Li Wang)

Fig. S1. $\rm H_2O$ and SO_2 tolerance test of the $\rm Mn_2O_3$ and Mn-Fe-0.2 catalysts at 100 $^{o}\rm C$

Fig. S2. Effect of H_2O or/and SO_2 on the activities of Fe_2O_3 .

Fig. S3. NH_3 oxidation profiles of Mn_2O_3 , Fe_2O_3 , and Mn-Fe-0.2

Fig. S4. The NO₂ yield during NO oxidation.

Fig. S5. In situ DRIFT spectra of Mn-Fe-0.2 catalysts exposed to 500 ppm NO + 5 vol % O_2/Ar (50 mL/min) (a) , and then switched to 500 ppm NH₃/Ar (50 mL/min) (b) at 50 °C.

Fig. S6. In situ DRIFT spectra of the Mn_2O_3 (a), Fe_2O_3 (b), and Mn-Fe-0.2 (c) catalysts exposed to 500 ppm NH₃/Ar (50 mL/min), and then switched to 500 ppm NO + 5 vol % O₂/Ar (50 mL/min) at 300 °C.

Fig. S7. Relative intensity of nitrate consumption over time on different samples at 300 °C.

Fig. S8. NO_x conversion as a function of temperature over MnFe catalysts prepared by different methods.

Catalyst	The practical H_2 consumption amount of α (mmol/g) ^a	The total theoretical H ₂ consumption amount (mmol/g) ^b	The difference value between the theoretical and practical H ₂ consumption amount (mmol/g)
Fe ₂ O ₃	1.91	18.80	6.95
Mn-Fe-0.1	2.29	17.56	6.16
Mn-Fe-0.2	2.04	16.63	5.21
Mn-Fe-0.3	2.47	15.78	2.84
Mn_2O_3	2.15	6.33	0.32

Table S1. The H_2 consumption amount of the Mn-Fe catalysts.

^a Calculated via H₂-TPR results.

^b Calculated via ICP results.