Supplementary Information(SI)

Single-, double-, and triple-atom catalysts on graphene-like C₂N enable electrocatalytic nitrogen reduction: insight from first principles

Jin Zhang, Wei An*

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China

*E-mail: weian@sues.edu.cn

Configuration	adsorbate	ZPE/(eV)	TS/(eV)
	*N2	0.19	0.13
	*NNH	0.52	0.09
	*NHNH	0.83	0.11
Enzymatic	*NHNH ₂	1.19	0.11
	*NH ₂ NH ₂	1.49	0.11
	* NH ₂	0.72	0.06
	* NH3	1.04	0.13

Table S1. Zero-point energy (ZPE, eV) and entropy correction (TS, eV) at T = 298 K for adsorbates on Ni₂@C₂N.

Table S2. The $M_3@C_2N$ three possible configurations and their corresponding binding energy (*BE*, in eV)¹. The gray, blue, and green spheres represent C, N, and M₃ atoms, respectively. Bold fonts represent the most stable configuration.

BE				
$M_3@C_2N$	Ι	II	III	IV
Cr	-6.50	/	-6.02	-5.73
Fe	-6.74	/	-5.92	-5.43
Co	-7.03	/	-6.01	-5.14
Ni	-6.93	/	-5.58	-4.79
Mo	/	-7.60	-7.09	-6.45
W	/	-7.85	-7.10	-6.04

 ${}^{1}BE = E_{M_{n}@C_{2}N} - E_{M_{n}} - E_{C_{2}N}$, where $E_{M_{n}@C_{2}N}$, $E_{C_{2}N}$ and $E_{M_{n}}$ are the total energies of $M_{n}@C_{2}N$ system, the C₂N monolayer, and the isolated M_{n} cluster, respectively.

Table S3. DFT-calculated Bader charge transfer (Δq) from M_n to C₂N substrate equivalent to oxidation state of M_n^{δ^+}.

	$M_1@C_2N$	$M_2@C_2N$	$M_3@C_2N$
	$M_1{}^{\delta +}$	$M_1{}^{\delta +}\!/M_2{}^{\delta +}$	$M_1{}^{\delta +}\!/M_2{}^{\delta +}\!/M_3{}^{\delta +}$
Cr	+1.28	+0.88/+0.88	+0.72/+0.62/+0.79
Fe	+1.11	+0.74/+0.74	+0.60/+0.48/+0.60
Co	+0.85	+0.66/+0.66	+0.46/+0.45/+0.48
Ni	+0.77	+0.57/+0.60	+0.42/+0.41/+0.44
Mo	+1.29	+0.92/+0.91	+0.43/+0.71/+0.96
W	+1.36	+0.98/+0.99	+0.40/+0.77/+1.06

			M _n @C	₂ N				*N ₂ /]	$M_n@C_2N$			
		BE	E_{c}	μ	Δq , e ⁻		Side-on		$\Delta q, \mathrm{e}^-$		End-on	
		slab	M _n	M _n cluster	*N2	$E_{\rm ads}$	BL	μ	N ₂	$E_{\rm ads}$	BL	μ
	Cr	-4.36	-4.02	6.0	/	/	/	/	0.22	-0.26	1.12	2.0
	Fe	-4.38	-4.90	4.0	0.31	-0.22	1.15	4.0	0.24	-0.76	1.13	2.0
м	Co	-4.25	-5.14	3.0	0.32	-0.34	1.16	1.0	0.25	-0.93	1.13	1.0
IVI 1	Ni	-4.91	-4.89	2.0	0.26	-0.09	1.15	0.0	0.19	-0.58	1.13	1.0
	Mo	-5.14	-6.31	6.0	0.46	-0.31	1.18	2.0	0.37	-0.85	1.15	2.0
	W	-5.94	-8.38	6.0	0.57	-0.65	1.20	2.0	0.42	-1.10	1.15	2.0
	Cr	-5.99	-4.19	4.0	0.74	-1.65	1.20	0.0	0.36	-1.07	1.14	2.0
	Fe	-5.66	-3.59	6.0	0.54	-0.84	1.17	2.0	0.33	-0.85	1.14	2.0
м	Co	-5.50	-3.67	4.0	0.47	-0.68	1.17	0.0	0.37	-1.07	1.15	0.0
1 v1 ₂	Ni	-5.71	-3.34	2.0	0.39	-0.15	1.17	2.0	0.35	-0.49	1.15	2.0
	Mo	-6.72	-4.36	0.0	0.66	-0.33	1.22	0.0	0.33	-0.87	1.14	2.0
	W	-8.65	-6.01	0.0	1.06	-0.81	1.29	0.0	0.35	-0.89	1.14	0.0
	Cr	-6.50	-3.17	6.0	1.24	-1.93	1.31	4.0	0.55	-1.33	1.16	2.0
	Fe	-6.74	-3.15	10.0	0.92	-1.55	1.26	6.0	0.48	-1.01	1.16	6.0
м	Co	-7.03	-3.33	6.5	0.85	-1.34	1.26	3.0	0.32	-1.19	1.16	1.2
1 v1 ₃	Ni	-6.93	-2.93	2.0	0.62	-0.87	1.22	0.0	0.46	-1.27	1.16	0.0
	Mo	-7.60	-4.20	2.0	0.73	-1.36	1.20	0.0	0.34	-1.11	1.14	0.0
	W	-7.85	-4.94	2.0	0.89	-1.51	1.23	0.0	0.31	-1.17	1.14	0.0

Table S4. DFT-calculated binding energy (*BE*, eV), Bader charge transfer (Δq , e⁻)¹, the spin magnetic moment (μ), adsorption energy (E_{ads} , eV) and bond length of *N₂ (*BL*, in Å)².

¹Positive values denote partial charge gained by *N₂.

²Calculated *BL* for gaseous N_2 is 1.115 Å.

			M ₁	M ₂	M ₃
	$U_{\rm M}{}^0$	n	$U_{ m dis}$	$U_{ m dis}$	$U_{\rm dis}$
Cr	-0.91	2	-0.74	-1.87	-1.63
Fe	-0.45	2	-0.71	-0.95	-1.05
Co	-0.28	2	-0.72	-0.76	-0.84
Ni	-0.26	2	-0.48	-0.52	-0.71
Mo	-0.20	3	-0.59	-0.48	-1.19
W	0.10	3	-0.71	-0.21	-1.10

 $^{1}U_{dis} = U_{M}^{0} + [\mu_{M,bulk} - (E_{M_{n}@C_{2}N} - E_{M_{n-1}@C_{2}N})]/ne$, where U_{M}^{0} is standard dissolution potential of M in

bulk form.

	$M_1 @C_2 N$	$M_2@C_2N$	$M_3@C_2N$
	$M_1{}^{\delta +}$	$M_1{}^{\delta +}\!/M_2{}^{\delta +}$	$M_1{}^{\delta +}\!/M_2{}^{\delta +}\!/M_3{}^{\delta +}$
Cr	/	+1.20/+1.18	+0.96/+1.02/+1.12
Fe	+1.14	+0.95/+0.90	+0.81/+0.83/+0.83
Co	+0.95	+0.83/+0.79	+0.69/+0.70/+0.71
Ni	+0.78	+0.68/+0.66	+0.58/+0.60/+0.63
Mo	+1.51	+1.24/+1.17	+0.80/+1.06/+1.04
W	+1.65	+1.54/+1.59	+0.83/+1.20/+1.13

 $\textbf{Table S6. DFT-calculated oxidation state of } M_n \text{ as a result of side-on } *N_2 \text{ adsorption on } M_n @C_2 N.$

Table S7. The adsorption energy (E_{ads}) of $*N_2$, $*N_2H$, $*NH_2$ and $*NH_3$ of the two adsorption configurations.

	Side-on		En	d-on	Side-on	Side-on/End-on		
		$E_{ads}(*N_2)$	$E_{ads}(*N_2H)$	$E_{ads}(*N_2)$	$E_{ads}(*N_2H)$	$E_{ads}(*NH_2)$	$E_{ads}(*NH_3)$	
	Cr	/	/	-0.26	-1.51	-2.71	-1.17	
	Fe	-0.22	-1.38	-0.76	-1.72	-2.71	-1.25	
м	Co	-0.34	-1.61	-0.93	-1.92	-2.51	-1.31	
1 v1 1	Ni	-0.09	-1.47	-0.58	-1.62	-2.19	-1.19	
	Mo	-0.31	-2.05	-0.85	-2.68	-3.25	-1.04	
	W	-0.65	-2.69	-1.10	-3.12	-3.75	-1.42	
	Cr	-1.65	-3.82	-1.31	-3.02	-4.39	-1.33	
	Fe	-0.84	-2.36	-0.78	-2.58	-3.77	-1.00	
м	Co	-0.68	-2.35	-1.07	-2.75	-3.81	-1.06	
IVI ₂	Ni	-0.15	-2.07	-0.49	-2.37	-3.17	-0.61	
	Mo	-0.33	-2.66	-0.87	-2.55	-3.66	-1.16	
	W	-0.81	-3.20	-0.89	-2.79	-3.80	-1.20	
	Cr	-1.93	-4.14	-1.33	-3.44	-4.67	-1.44	
	Fe	-1.55	-3.49	-1.01	-3.22	-4.21	-1.08	
м	Со	-1.34	-3.56	-1.19	-3.19	-4.10	-1.17	
1 VI 3	Ni	-0.87	-3.06	-1.27	-2.83	-3.67	-0.92	
	Mo	-1.36	-3.30	-1.11	-3.05	-4.27	-1.49	
	W	-1.51	-3.58	-1.17	-3.13	-4.29	-1.58	

Table S8. Gibbs free energy change (ΔG , in eV) for the first PCET step ($*N_2 + H^+ + e^{-} \rightarrow *NNH$) and

the last PCET step (*NH₂ + H⁺ + e⁻ \rightarrow *NH₃) of the two adsorption configurations as well as desorption of *NH₃ with solvation corrections included, at *T* = 298.15 K. The ΔG^{de} (*NH₃) in italics represent the data above the threshold value (0.75eV)¹ that can be regarded as insurmountable for reactions or desorption occurring at room temperature.

		Sid	e-on	Ene	d-on	S	Side-on/End	l-on
		$\Delta G(*N_2)$	$\Delta G(*N_2H)$	$\Delta G(*N_2)$	$\Delta G(*N_2H)$	$\Delta G(*\mathrm{NH}_3)$	$\Delta G(*H)$	$\Delta G^{\text{de}}(*\text{NH}_3)$
	Cr	/	/	0.28	0.99	-0.70	0.56	0.67
	Fe	0.26	1.11	-0.16	1.20	-0.80	0.79	0.79
м	Co	0.14	1.01	-0.40	1.25	-1.05	0.37	0.82
IVI ₁	Ni	0.39	0.93	-0.06	1.22	-1.23	0.64	0.70
	Mo	0.21	0.51	-0.30	0.39	-0.10	-0.17	0.57
	W	-0.11	0.21	-0.54	0.20	0.06	-0.53	0.92
	Cr	-1.11	0.10	-0.77	0.53	0.66	-0.20	0.89
	Fe	-0.29	0.74	-0.23	0.47	0.38	-0.02	0.55
м	Co	-0.14	0.61	-0.51	0.59	0.34	-0.18	0.60
1 v1 ₂	Ni	0.36	0.41	0.03	0.43	0.16	0.03	0.15
	Mo	0.23	-0.17	-0.33	0.57	0.07	-0.11	0.73
	W	-0.23	-0.18	-0.35	0.37	0.16	-0.32	0.77
	Cr	-1.34	0.03	-0.73	0.09	0.84	-0.33	1.00
	Fe	-0.98	0.33	-0.48	0.05	0.70	-0.52	0.67
м	Co	-0.76	0.06	-0.56	0.16	0.52	-0.25	0.73
1 v1 ₃	Ni	-0.31	0.14	-0.71	0.66	0.31	-0.34	0.49
	Mo	-0.79	0.33	-0.57	0.32	0.37	-0.42	1.07
	W	-0.92	0.15	-0.60	0.28	0.31	-0.55	1.14

Table S9. DFT-calculated variation in spin magnetic moment (μ , μ_B) for adsorbates on $M_n@C_2N$ during the progress of HER and NRR.

				side-on	side-on		
		*	*Н	*N ₂	$N_{2}H$	*NH ₂	*NH ₃
	Fe	4.0	1.0	4.0	1.8	3.0	3.5
	Co	1.0	2.0	1.0	0.0	0.0	2.1
м	Ni	2.0	1.0	0.0	0.8	1.0	1.8
1 v1 1	Cr	4.0	3.0	/	/	/	/
	Mo	2.0	1.0	2.0	1.0	1.0	2.0
	W	2.0	1.0	2.0	0.4	1.0	2.0
	Fe	4.0	2.0	2.0	3.0	3.0	4.0
	Co	2.0	0.0	0.0	1.0	1.0	0.9
м	Ni	0.0	1.0	2.0	0.0	0.5	1.5
IVI ₂	Cr	2.0	0.0	0.0	1.0	5.0	4.0
	Mo	0.0	2.0	0.0	0.9	1.0	0.0
	W	0.0	0.0	0.0	0.0	1.0	0.0

	Fe	6.0	7.0	6.0	4.9	9.0	5.8
	Co	3.0	3.0	3.0	0.0	3.0	1.0
м	Ni	0.0	0.0	0.0	0.5	0.5	1.7
11/13	Cr	4.0	3.0	4.0	3.0	3.0	2.0
	Mo	0.0	0.0	0.0	1.0	0.3	0.0
	W	0.0	0.0	0.0	1.0	0.3	0.0

Figure S1. The differential charge diagram of $M_n@C_2N$ along with isosurface of charge density difference ($\Delta \rho$), where $\Delta \rho = \rho_{(Mn@C_2N)} - \rho_{(C2N)} - \rho_{(Mn)}$, and isosurface level=0.004 e/Bohr³. Yellow: charge accumulation; Cyan: charge depletion.

Figure S2. Linear trend of charge transfer (Δq) and binding energy (*BE*) of M_n.

Figure S3. Net spin density for $M_n@C_2N$ (M = Fe, Co, Ni, Cr, Mo and W) at the isosurface level of 0.004 e/Bohr³.

Figure S4. Isosurface of charge density difference for N_2 binding on $M_n@C_2N$ (a) $Ni_1@C_2N$, (b) $Ni_2@C_2N$, (c) $Ni_3@C_2N$ in side-on or end-on configuration. The corresponding bond length and the charge transferred to adsorbed N_2 are labeled. Isosurface level=0.004 e/Bohr³. Yellow: charge accumulation; Cyan: charge depletion.

Figure S5. Net spin density for Ni₂@C₂N (*N₂ and *N₂H) at the isosurface level of 0.004 e/Bohr³.

	*N2	*N ₂ H	*NH ₂	*NH ₃
N ₁ Fe ₁ N ₁		2		
N ₁ Co ₁ N ₁	×.		0,0 0,0	
N ₁ Ni ₁ N ₁				
N ₁ Mo ₁ N ₁				cho ≅©≊
N ₁ W ₁ N ₁		2	0-0 8-0 8-0	
N ₃ Fe ₂ N ₃		1		
N ₃ Co ₂ N ₃	Å.	2		
N ₂ Ni ₂ N ₂		00000		
N ₃ Cr ₂ N ₃		Å		
N ₃ Mo ₂ N ₃				CC All and a
N ₃ W ₂ N ₃				6°
N ₂ Fe ₃ N ₂				
N ₂ Co ₃ N ₂			Å	
N ₂ Ni ₃ N ₂				
N ₂ Cr ₃ N ₂				
N ₃ MoN ₂ MoN ₁ Mo				
N ₃ WN ₂ WN ₁ W				

Figure S6. DFT-optimized structures of $*N_2$, $*N_2H$, $*NH_2$ and $*NH_3$ on $M_n@C_2N$.

Figure S7. Scaling relations for adsorption energy (E_{ads}) of N_2H/N_2 and NH_2/N_2 for (a) side-on and (b) end-on mode of N_2 , where E_{ads} is referenced to gaseous N_2 , N_2H and NH_2 for absolute binding strength.

Figure S8. Gibbs free energy diagrams for Volmer-Heyrovsky mechanism of HER on $M_n@C_2N$ at 0 V (vs. RHE). The full coverage of *H was employed to calculate *H binding on $M_n@C_2N$ whose largest E_{ads} was chosen for HER (Figure S9).

Figure S9. Adsorption configurations of full coverage of *H on (a) $Mo_2@C_2N$, (b) $Mo_2@C_2N$, (c) $Mo_3@C_2N$, (d) $W_3@C_2N$.

1. Wang, H.; Liu, Z., Comprehensive Mechanism and Structure-Sensitivity of Ethanol Oxidation on Platinum: New Transition-State Searching Method for Resolving the Complex Reaction Network. *J. Am. Chem. Soc.* **2008**, *130*, 10996-11004.