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1. Materials

Most reactants are commercially available and used without further purification: methyl oleate (DAKO
AG, 91.5 %), methyl 9,10-dihydroxystearate (abcr, 96%), phosphotungstic acid (Carl Roth, hydrate)
hydrogen peroxide (35wt% aqueous solution, Acros Organics), acetonitrile (99.9%, Carl Roth). Methyl
9,10-epoxystearate was synthesized according to the method described in our previous work * and
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obtained in a purity of 91.5%. Methyl 9-hydroxy-10-oxystearate/Methyl 9-oxy-10-hydroxystearate was
synthesized according to the procedure described in section 9. The carboxylic acids pelargonic acid
(Carl Roth, 97%) and mono methyl azelate (tci, 97%) and the cleavage aldehyde nonanal (Carl Roth,
97%) are commercially available and were used for GC-calibration and as a reference.

The composition of methyl oleate, given from the supplier, is as follows:
e 91.5% methyl oleate;
o 3.0% methyl palmitate;
o 2.0% methyl stearate;
e 2.5 % methyl linoleate;
e < 0.1% methyl linolenate;
e 1% fatty acid methyl esters > C18

2. Analytical equipment and methods

The product samples were analysed by GC (Agilent 7890B with a HP-5 capillary column, 30 m x 0.25
mm x 0.25 mm) using an FID/MS in connection with an auto sampler. Conversion and yields were
determined with dodecane as internal standard and tert-butanol as solvent. lodometric analysis of
peroxide was carried out with Sl Analytics TitroLine 7000. Analysis of retentate and permeate was
carried out using GC-TCD for determination of water/acetonitrile content. W and P content was
quantified by inductively coupled plasma optical emission spectrometry (ICP-OES).

3. Reaction - experimental procedure

Experiments were carried out in 9 mL glass pressure tubes (ACE glass, see Figure S1) equipped with a
magnetic stirrer bar. A stock solution of catalyst was prepared by dissolving phosphotungstic acid in
acetonitrile. Methyl oleate/methyl 9,10-dihydroxystearate were added directly to the pressure tube
and diluted with catalyst stock solution. Hydrogen peroxide was added just before placing the tube in
the preheated steel block. The reaction mixture was stirred at 500 rpm and 100 °C for 24 h, if not
otherwise specified. After cooling on ice, the reaction mixture was diluted with tert-butanol and
dibutylether or dodecane was added as internal standard for GC-analysis.
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Figure S1: steel block and pressure tubes on stirrer/heating plate

4. Further investigation on oxidative cleavage of methyl oleate

Before we carried out further experiments on oxidative cleavage of methyl 9,10-dihydroxystearate,
we undertook some investigations on oxidative cleavage of methyl oleate without additional NaOH.
However, those did not result in significant optimization and are therefore only mentioned as
supplementary material.

4.1Reaction temperature
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Figure S 2: effect of temperature on oxidative cleavage of methyl oleate

Reaction conditions: methyl oleate (1 mmol), H,0, (35 wt% aqueous solution, 10 mmol), H;PW1,0,,
(5 mol%), acetonitrile (3.04 g); t = 24 h. Conversion and yield determined via GC-FID-analysis with
dodecane as internal standard.
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4.2H,0, concentration
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Figure S 3: effect of concentration of hydrogen peroxide on oxidative cleavage of methyl oleate

Reaction conditions: methyl oleate (1 mmol), H,0, (10 mmol), HsPW,040 (5 mol%), acetonitrile
(3.04 g); t =24 h, T = 100°C. Conversion and yield determined via GC-FID-analysis with dodecane as
internal standard.

4.3 Equivalents of H,0,
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Figure S 4: effect of H,0, equivalents on oxidative cleavage of methyl oleate

Reaction conditions: methyl oleate (1 mmol), H,0, (35wt% aqueous solution), H;PW;,0,0 (5 mol%),
acetonitrile (3.04 g); t = 24 h, T = 100°C. Conversion and yield determined via GC-FID-analysis with
dodecane as internal standard.

4.4 Concentration of methyl oleate

In order to avoid potential oligomerization as a side-reaction, we considered dilution of the reaction
system. Thus, concentration of substrate (and also concentration of catalyst and oxidant) was
investigated by variation of the amount of acetonitrile as a solvent.
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Figure S 5: effect of substrate concentration on oxidative cleavage of methyl oleate

Reaction conditions: methyl oleate (1 mmol), H,0, (35wt% aqueous solution, 10 mmol), H;PW 1,04
(5 mol%), acetonitrile (experiment at substrate concentration of 21wt% is carried out without
solvent); t = 24 h, T = 100°C. Conversion and yield determined via GC-FID-analysis with dodecane as
internal standard.

4.5 Continuous feed of H,0,
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Figure S 6: comparison of batchwise and semi-batchwise addition of H,0,

Reaction conditions: methyl oleate (1 mmol), H,0, (35wt% aqueous solution, 10 mmol), HsPW,0, (5
mol%), acetonitrile (experiment at substrate concentration of 21wt% is carried out without solvent);
t=24h, T =100°C. semi-batch: addition of H,0, via peristaltic pump over 18 h. Conversion and yield
determined via GC-FID-analysis with dodecane as internal standard.
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4.6 Effect of additional water

Since the diol was not detected in significant amounts, we considered addition of water to the
reaction system to improve hydrolysis of methyl 9,10-epoxystearate.
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Figure S 7: effect of additional water on oxidative cleavage of methyl oleate

Reaction conditions: methyl oleate (1 mmol), H,0, (35wt% aqueous solution, 10 mmol), HsPW 1,0, (5
mol%), acetonitrile/water (3.04 g); t = 24 h, T = 100°C. Conversion and yield determined via GC-FID-
analysis with dodecane as internal standard.

4.7 Blind experiment: no oxidative cleavage of methyl 9,10-
dihydroxystearate without catalyst
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Figure S 8: Experiment in absence of catalyst

Reaction conditions: methyl 9,10-dihydroxystearate (0.5 mmol), H,0, (35wt% aqueous solution, 5
mmol), acetonitrile (1.57 g); t = 24 h, T = 100°C, pH adjusted to 5 with 2M NaOH. Conversion and
yield determined via GC-FID-analysis with dodecane as internal standard
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4.8 Stability of methyl 9,10-epoxystearate, pelargonic acid and mono methyl

azelate
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Figure S 9: stability of methyl 9,10-epoxystearate and oxidative cleavage products in absence and presence (striped) of
NaOH

Reaction Conditions: methyl 9,10-epoxystearate 2 (0.15 g, 0.5 mmol), H3PW;,0,4, (0.144 g; 0.05 mmol), H,0
(0.97), acetonitrile (3.14 g), T =100 °C. 2 NaOH (2 M, 0.1 g). Molar amounts determined via GC-FID-analysis
with dibutyl ether as internal standard.

4.9 Addition of NaOH at catalyst loading of 3 mol%
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Figure S 10: oxidative cleavage of methyl 9,10-dihydroxystearate depending on molar ratio of NaOH:catalyst at catalyst
loading of 3 mol%

Reaction Conditions: methyl 9,10-dihydroxystearate 3 (0.1 g, 0.3 mmol), H3PW;,04 (3 mol%), H,0, (35wt%, 10
eq.), acetonitrile (1.02 g), NaOH (2 M), T = 100 °C, t = 24 h. Conversion (X) and yield (Y) determined via GC-FID-
analysis with dibutyl ether as internal standard.
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4.10 Effect of catalyst loading at optimized NaOH:H3;PW,,04, ratio of 7:1
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Figure S 11: effect of catalyst loading on oxidative cleavage of methyl 9,10-dihydroxystearate 3 at optimized
NaOH:H3PW 1,040 ratio Of 7:1

Reaction Conditions: methyl 9,10-dihydroxystearate (0.1 g, 0.3 mmol), H3PW 1,044, H,0, (35wt%, 10 eq.),
acetonitrile (1.02 g), NaOH (2 M, NaOH: H3PW1,0407:1), T = 100 °C, t = 24 h. Conversion (X) and yield (Y)
determined via GC-FID-analysis with dibutyl ether as internal standard.

4.11 Application of Na,WO, as the catalyst
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Figure S 12: variation of the catalyst: application of Na,WQO,

Reaction Conditions: methyl 9,10-dihydroxystearate (0.1 g, 0.3 mmol), H,WO,, H,0, (35wt%, 10 eq.),
acetonitrile (1.02 g), T = 100 °C, t = 24 h. Conversion (X) and yield (Y) determined via GC-FID-analysis with
dibutyl ether as internal standard.
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412 Additional water at various equivalents of H202
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Figure S 13: influence of additional water on the oxidative cleavage of methyl 9,10-dihydroxystearate using various
equivalents of oxidant

Reaction Conditions: methyl 9,10-dihydroxystearate (0.1 g, 0.3 mmol), H;PW 1,0, (3 mol%), H,0, (35wt%),
acetonitrile (1.02 g), additional water, T = 100 °C, t = 24 h. Conversion (X) and yield (Y) determined via GC-FID-
analysis with dibutyl ether as internal standard.

413 Decomposition of H,O, in presence of phosphotungstic acid

Since we considered a correlation of catalyst loading and decomposition of hydrogen peroxide, we
investigated O, gas release from a mixture of phosphotungstic acid, hydrogen peroxide and
acetonitrile. Therefore, a stainless steel reactor, equipped with a glass inlay to exclude
corrosion/decomposition was filled with the reagents. The reactor was also equipped with a pressure
sensor and a digital pressure gauge (BD sensors DMO01). The initial and end concentration of hydrogen
peroxide was analyzed via iodometric titration.
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Figure S 14: Decomposition of H202 depending on the amount of catalyst

Reaction conditions: H,0, (35wt% aqueous solution, 10 mmol), H;PW;,0,, acetonitrile (3.04 g);
T =100°C.
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5. Higher molecular oligomers
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Figure S 15: HESI MALDI-MS of side-product

6. Organic solvent nanofiltration (OSN) — experimental procedure

The experiments were performed in a miniplant, specifically designed for OSN experiments. The setup
contains a feed flask (heated and stirred), one HPLC pump for the feeding and the pressurization of
the membrane loop and a gear pump for a proper flow in the membrane loop. The membrane itself is
installed in the commercial Evonik 2.5 METcell lab scale module. Further equipment is a Coriolis mass
flow meter for the flux measurement and a backpressure valve for the required transmembrane
pressure. For more details s. Figure S 17 and Figure S 16. In the membrane screening experiments the
retentate and permeate were recycled back to the feed flask. Therefore, the initial composition
remained the same over the duration of one experiment. For the long-time experiment, only the
retentate was recycled and therefore concentrated, while the permeate was discharged out of the

system.

S11



reactor loop membrane loop

retentate

A

feed _ _
c

~ )
Q permeate
membrane

—(—

HPLC pump gear pump

Figure S 16: Simplefied flow scheme of miniplant

Figure S 17: Photo of miniplant setup during membrane screening

The membranes were properly treated and conditioned (at least 4 h) according to the manufacturer
prior to the start of the experiments. After 2h and 4h samples were taken from the retentate and the
permeate and analyzed via ICP (s. section ICP-results) to determine the retention. The retention was
calculated after equation (1). Note, that in literature the formula is also found as well for the catalyst
concentration in the feed instead of in the retentate. In our case, Ceat, retentate IS Cl0S€ O Ceat, feed-

Ccat,permeate

R=1-—""""" (1)

Ccat, retentate
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7. GC-Analysis

GC-Analysis of reaction samples was carried out using an Agilent 7890A device, equipped with a
flame ionization detector (FID) and an Agilent HP-5 column (30 m x 0.32 mm x 0.25 um) (5% Phenyl
Methyl Siloxan). Injection volume is 1 pL and split ratio is 70:1. The heating profile is given in Table
S1. Dibutyl ether was used as an internal standard for quantification. An exemplary GC-calibration
curve is given in Figure S 16.

Table S1: Heating profile

Rate [°C/min] Value [°C] Hold time [min]
- 50 3

Ramp 1 20 290 0

Ramp 2 45 320 3

2,5
Y :0,2:387x+0,0153 ® mono methyl azelate
5 2 R2=0,9999 [}
=
=
% pelargonic acid
__5 15 .
k=1 o
< <7 y=0,7113x+0,0201
il - R? =0,9995
3
=}
e
o
< 03 ;
0 &
0 0,5 1 1,5 2 25

m product / m dibutylether

Figure S 18: GC-FID calibration of cleavage products

GC-analysis of retentate and permeate from organic solvent nanofiltration was carried out using
Shimadzu GC-17A equipped with a FS-Supreme-5ms HT column (30 m x 0.32 mm x 0.25 um). Injection
volume was 0.5 pL and split ratio 180:1. Analysis was performed at a constant temperature of 70 °C.

3.5
3

1.5 . @ Wasser
] ,.,.- ...... Linear (Wasser)

A water / A MeOH

0 0.5 1 1.5 2 2.5 3
m water/ m MeOH

Figure S 19: GC-TCD calibration of water
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8. ICP-results
ICP-OES-analysis was carried out using Analytik Jena PlasmaQuant PQ 9000 Elite.
Table S 2: ICP results for DuraMem 500

DuraMem 500 Phosphorus [ppm]  Tungsten [ppm]

Permeate 2h 13 935
Retentate 2h 41 2745
Permeate 4h 11 828
Retentate 4h 40 2777

Table S 3: ICP results for AMS Nanopro S-3012

AMS Nanopro S-

3012 Phosphorus [ppm]  Tungsten [ppm]
Permeate 2h 2 137

Retentate 2h 41 2751

Permeate 4h 3 164

Retentate 4h 42 2814

Table S 4: ICP results for AMS Nanopro S-3012 in long-time experiment

AMS Nanopro Phosphorus [ppm]  Tungsten [ppm]

Permeate 2h 1 196
Retentate 2h 40 3170
Permeate 4h 2 261
Retentate 4h 41 3211
Permeate 21h 4 403
Retentate 21h 50 3833
Permeate 45h 9 736
Retentate 45h 66 4956

9. Synthesis of acyloin

Using the reaction conditions reported in figure 10 (3 eq. of H,0,), the acyloin was obtained from the
diol with high selectivity. Therefore, we repeated the procedure as follows to isolate the intermediate:
six pressure tubes, equipped with a magnetic stirrer bar, were filled with methyl 9,10-
dihydroxystearate (0.1 g; 0.3 mmol) and 1 g of a stock solution, consisting of 0.215 g of
phosphotungstic acid and 7.9 g of acetonitrile, is added, corresponding to a catalyst loading of 3 mol%.
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Sodium hydroxide is added as 2 M aqueous solution (0.0365 g). Water (0.06 g) is added to ensure
solution of sodium hydroxide. Hydrogen peroxide (50wt%, 0.086 g, 3 eq.) is added right before placing
the closed pressure tubes into a preheated block of steel on a stirrer plate. The reaction is run for 3 h
at 100 °C. After cooling on ice, all six batches are combined and stored in an ice bath for 1 h. A white
solid precipitates and is filtered off. The filtered solution is separated, before the solid is washed with
cold water and dried under high vacuum (0.08 mbar). From GC-analysis, the white solid contains 70%
of methyl 9,10-dihydroxystearate and 30% of acyloin. The filtered solution contains mainly acyloin and
traces of carboxylic acids, but no more methyl 9,10-dihydroxystearate. It is then extracted with
isooctane (3x, volumetric ratio of aqueous:organic phase of 1:1) and the organic layer is washed with
water (3x, volumetric ratio of aqueous:organic phase of 1:1). The organic layer is then concentrated
under reduced pressure (110 mbar at 50°C) and dried under high vacuum (0.08 mbar). Finally, 0.15 g
of the acyloin (according to GC-FID and NMR) are obtained as a yellow oil, corresponding to an isolated
yield of 26%.

10.ldentification of intermediates and products

Known products and intermediates were identified by low resolution mass spectroscopy and
commercially available references in GC-FID analysis. Methyl 9,10-epoxystearate was synthesized
according to the procedure described in our previous work.! The acyloin methyl-9-hydroxy-10-oxy-
octadecanoate/ methyl-9-oxy-10-hydroxy-octadecanoate was isolated from our reaction mixture
according to the procedure described in section 9.

101 Methyl oleate

\/\/\/\/;/\/\/\)J\O/
MS, (m/z): 296.3 (13.17); 265.3 (50.76); 264.3 (81.64); 235.2 (12.38); 222.2 (46.75); 221.2
(19.36); 220.2 (18.25); 207 (11.32); 181.1 (12.90); 180.1 (44.33); 179.1 (10.03); 169.1 (13.23);

167.1 (11.70); 166.1 (28.13); 165.2 (19.95); 153.1 (19.96); 152.1 (35.64); 151.1 (35.44); 149.2
(17.4); 148.1 (17.01); 147 (13.81); 143.1 (16.08); 141.1 (31.75); 139.2 (29.29); 138.2 (33.28);
137.1 (42.04); 135.1 (22.66); 134.1 (22.83); 133 (15.3); 129.1 (15.49); 128 (15.37); 127.1
(12.19); 125.9 (10.69); 125.1 (45.46); 124.1 (47.44); 123.1 (63.79); 122.1 (13.9); 121.1 (28.86);
119 (17.43); 115 (23.34); 114.1 (18.24); 113.1 (14.72); 112.1 (39.73); 111.1 (100); 110.1
(96.19); 109.1 (74.6); 108.1 (24.6); 107 (21.86); 105 (10.41); 101 (31.28).

10.2 Methyl 9,10-epoxystearate
9] @)

oA~
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MS, (m/z): 294.1 (6.18); 281.2 (6.53); 264.2 (5.61); 199 (15.53); 185 (11.84); 171.1 (22.64); 170.2
(11.08); 168.1 (13.9); 167.1 (12.53); 158 (11.31); 157.1 (19.04); 156.2 (21.59); 155.1 (100); 154.1
(11.38); 153;1 (24.49); 150.1 (14.38); 149.1 (12.39); 143.1 (15.89); 142.1 (12.05). 141.1 (20.48); 140.1
(17.46); 139.1 (40.51); 138.1 (18.72); 137.1 (19.43); 136.1 (14.99); 135.1 (18.65); 127.1 (35.8); 126.1
(11.51); 125.1 (47.73); 124.1 (22.73); 123.1 (19.83); 121.1 (29.01); 120.1 (10.54); 111.1 (39.56); 110.1
(32.42); 109.1 (61;76); 107.1 (20.63); 101.1 (19.62)

10.3 Methyl 9,10-Dihydroxystearate

OH (0]
/\/\/\/\H\/\/\/\)J\O/
OH

MS, (m/z): 281.2 (1.00), 188.2 (5.29), 187.2 (25.76), 156.1 (12.90), 155.1 (100), 143.2 (1.88),
138.1 (30.17), 127.1 (5.87), 115.0 (5.15), 110.1 (9.70), 109.1 (41.53), 101.1 (6.73), 96.1
(18.23), 95.1 (18.41), 87.1 (35.91), 84.1 (14.82), 83.1 (36.25), 81.1 (23.64), 74.1 (42.32), 71.1
(12.00), 69.1 (62.61), 67.1 (44.72), 57.1 (59.02), 55.1 (94.98), 43.1 (49.93), 41.1 (61.45).

10.4 Oleic acid

\/\/\/\/W\/\/\)J\OH

MS, (m/z): 265.4 (1.19), 264.3 (4.80), 235.2 (1.07), 222.3 (1.63), 220.2 (1.43), 207.4 (1.02),
180 (1.44), 165.1 (1.70), 152.1 (2.41), 151.2 (3.19), 148.1 (2.09), 147.1 (1.62), 138.1 (3.56),
137.1 (4.73), 133.0 (2.58), 125.1 (5.95), 123.1 (6.58), 119.1 (2.34), 114.0 (4.40), 111.1
(13.65), 110.1 (10.34), 97.1 (30.47), 96.1 (19.51), 87.1 (5.28), 83.1 (40.94), 81.1 (30.17),
79.28 (14.28), 69.1 (57.75), 67.1 (43.09), 60.1 (35.83), 57.1 (28.57), 56.1 (22.08), 55.1 (100),
54.1(25.76), 45.1 (16.70), 43.1 (60.58), 42.1 (17.31), 41.1 (93.29).

10.5 Methyl-9-hydroxy-10-oxy-octadecanoate/ Methyl-9-oxy-10-hydroxy-

octadecanoate
(e OH
WV\)MO\ \/\/\/\)\H/\/\/\/\H/O\
OH (0] (0] (0]

1H NMR (600 MHz, CDCI3) § 4.16 (s, 1H, -CHOH), 3.66 (s, 3H, CH3;OR-), 3.48 (s, 1H, -OH), 2.43
(m, 2H, -CH,CO-), 2.29 (t, 2H, -CH,COOMe, J = 6 Hz), 1.60 (m, 4H, -CH,-), 1.45 (m, 2H, -CH,-),
1.29 (m, 18 H, -CH,-), 0.86 (t, 3H, CHs-, J = 9 Hz).

13C NMR (151 MHz, CDCI3) & 212.73 (1C), 174.48 (1C), 76.61 (1C), 51.68 (1C), 38.06 (1C),
34.25 (1C), 33.98 (1C), 32.04 (1C), 29.67 (1C), 29.51 (1C), 29.30 (1C), 29.21 (2C), 29.10 (1C),
25.03 (1C), 23.86 (1C), 22.85 (1C), 14.30 (1C).
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MS, (m/z): 329.30 (0.39), 279.30 (2.97), 188.10 (3.78), 187.10 (34.27), 185.10 (6.97), 171.10
(2.96), 158.10 (54.44), 155.10 (100), 141.10 (6.83), 129.10 (9.50), 125.10 (9.33), 115.10
(30.86), 109,10 (16.88), 101,00 (13.05), 97.10 (10.65), 87.00 (43.25), 83.10 (17.48), 81.10
(7.24), 74.00 (23.37), 69.10 (19.61), 67.00 (11.29), 57.10 (16.41), 55.10 (28.40), 43.10
(12.64), 41.00 (13.62).

HR-MS: Ci9H3704 [M+H]* = calculated: 329.26837, found: 329.26864.
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Figure S 20: 1H-NMR of methyl 9-hydroxy-10-oxy-octadecanoate/ methyl 9-oxy-10-hydroxy-octadecanoate
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Figure S 21: 13C-NMR of methyl 9-hydroxy-10-oxy-octadecanoate/ methyl 9-oxy-10-hydroxy-octadecanoate

10.6 Pelargonic acid

O

\/\/\/\)J\OH

MS, (m/z): 130.0 (4.08), 129.0 (24.59), 115.1 (27.87), 100.9 (8.52), 98.0 (13.40), 82.9 (11.75),
74.1(10.77), 73.0 (86.39), 69.1 (24.14), 61.0 (16.18), 60.0 (100), 57.0 (56.47), 56.1 (12.09),
55.1 (57.24), 53.1 (9.00), 45.0 (46.12), 43.1 (48.17), 42.1 (20.24), 41.1 (76.28).

10.7 Nonanal

(0]
\/\/\/\)
MS, (m/z): 124.1 (1.33), 114.1 (3.87), 98.1 (18.76), 96.1 (14.57), 95.1 (15.08), 85.0 (2.41),
82.1(19.49), 81.1 (18.76), 79.1 (3.08), 71.1 (10.60), 70.1 (24.69), 69.1 (21.53), 68.1 (19.46),

67.1(19.39), 57.1 (62.44), 56.1 (35.80), 55.1 (44.43), 54.1 (11.82), 44.0 (29.76), 43.1 (52.68),
42.1 (100), 40.1 (7.74)
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