Supporting Information

Tailoring the activity and selectivity of Rh/SiO₂ in the selective hydrogenation of

phenol by CoO_x promotion

Fei Zhang,^{a, c} Chunzheng Wu,^b Shuibo Wang,^a Shiwei Wang,^a Tong Li,^a Laixi Zou,^{c, *}

Hongbo Yu,^{a,} *and Hongfeng Yin^{a, *}

^a Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China

^b Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China

^c School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P.R. China

* Corresponding author: E-mail: yinhf@nimte.ac.cn; Fax: +86 0574 8668 5043

Fig. S1 XRD patterns showing: a) Rh_1Co_3 NPs; b) Rh_1Co_1 NPs; $Rh_1-(CoO_x)_3/SiO_2$ nanocatalysts; $Rh_1-(CoO_x)_1/SiO_2$ nano catalysts.

Fig. S2 Size distributions of as-synthesized nanomaterials showing: a), Rh NPs; b), Rh₃Co₁ NPs; c), Rh₁Co₁ NPs; d), Rh₁Co₃ NPs; e) Rh/SiO₂; f), Rh₃-(CoO_x)₁/SiO₂; g), Rh₁-(CoO_x)₁/SiO₂; and h), Rh₁-(CoO_x)₃/SiO₂.

Fig. S3 FT-IR spectra of Rh_3Co_1/SiO_2 sample (without calcination) and $(Rh_2O_3)_3$ -(CoO_x)₁/SiO₂ after calcination treatment.

Figure S4 Co 2p XPS spectra of SiO₂ supported Rh-based nanocatalysts. (Rh loading, theoretical value 1 wt%).

Figure S5 Co 2p XPS spectra of SiO₂ supported Rh-based nanocatalysts. (Rh loading, theoretical value 3 wt%).

Fig. S6 EDS spectra of Rh_3 -(CoO_x)₁/SiO₂ nano catalyst.

Fig. S7 EDS spectra of Rh_1 -(CoO_x)₁/SiO₂ nano catalyst.

Fig. S8 EDS spectra of Rh_1 -(CoO_x)₃/SiO₂ nano catalyst.

Sample	Rh loading (wt%)	Co loading (wt%)
Rh/SiO ₂	0.99%	-
Rh ₃ -(CoO _x) ₁ /SiO ₂	1.02%	0.18%
Rh ₁ -(CoO _x) ₁ /SiO ₂	1.08%	0.56%
Rh ₁ -(CoO _x) ₃ /SiO ₂	1.04%	1.65%

Table S1. The actual loadings of Rh and Co in Rh-CoO_x/SiO₂ catalysts analyzed by ICP

Table S2. The catalytic performance for hydrogenations of phenol over CoO_x/SiO_2

catalyst.

OES.

Catalyst ^a		Selectivity (%)			
	Conversion (%) -	Cyclohexanol	Others		
0.1000 g CoO _x /SiO ₂	0	N/A	N/A		
^a Reaction conditions: phenol reaction time, 100 min; speed	, 0.1000 g; temperature, 60 of agitation, 600 rpm/min.	°C; ethanol, 10.0 mL;	H ₂ , 1.0 MPa;		

Synthesis of CoO_x/SiO₂ catalyst.

The CoO_x/SiO₂ catalyst was prepared by a wet impregnation method. A certain amount of Co(NO₃)₂·6H₂O aqueous solution was impregnated on 1.0 g of SiO₂ to prepare the 1.0 wt % CoO_x/SiO₂ catalyst. After 4h of immersion, the sample was dried for 5h at 110 °C, and followed by calcining at 500 °C for 3h in air to obtain CoO_x/SiO₂ catalyst.

reported heterogeneous catalysts for the selective hydrogenation of phenol.									
	Conditions			Comu	Cal				
Catalysts	Т	Р	t	- Conv. (%)	sei. (%)	h	Ref.		
	(°C)	(MPa)	(h)						
Rh ₃ -(CoO _x) ₁ /SiO ₂	60	1.0	1.7	98.1	99.4	213	This work		
Rh/SiO ₂	25	0.1	9.0	100	18	18	1		
Rh@HMSNs	45	0.5	3.0	90.6	96.6	28	2		
Rh/CNF	300	2.0	0.2	51	40	89	3		
Rh-PAA	80	4.0	0.5	40	100	40	4		
FFSiRh	75	0.6	2.0	100	52	10.	5		
Rh@S-MIL-101	50	0.5	2.0	80	35	33	6		

Table S3. Comparison of catalytic performance of Rh_3 -(CoO_x)₁/SiO₂ and previously

^a Turnover number (TON) is measured as moles of products per total molar Rh atoms.

Reference

- 1 H. W. Zhang, A. J. Han, K. Okumura, L. X. Zhong, S. Z. Li, S. Jaenicke, G. K. Chuah, *J. Catal.*, 2018, **364**, 354-365.
- 2 P. J. Yan, P. F. Tian, K. J. Li, M. A. C. Stuart, J. Y Wang, X. H. Yu S. H. Zhou, *Chem. Eng. J.*, 2020, **397**, 125484-125495.
- 3 H. J. Wang, F. Y. Zhao, S. Fujita, M. Arai, *Catal. Commun.*, 2008, **9**, 362-368.
- 4 S. Kuklin, A. Maximov, A. Zolotukhina, E. Karakhanov, *Catal. Commun.*, 2016, **73**, 63-68.
- 5 L. L. R. Vono, C. Broicher, Karine Philippot, L. M. Rossi, *Catal. Today.*, 2021, **381**, 126-132.
- 6 I. E. Ertas, M. Gulcan, A. Bulut, M. Yurderi, M. Zahmakiran, *J. Mol. Catal. A: Chem.*, 2015, **410**, 209-220.