Effects of the Nanowire Length on Large Second Order Nonlinear Optical Response: A Theoretical Investigation of the Thinnest Doped Beryllium Nanowires with IR and UV Working Wavebands

Jing Li,^a Weihong Chen, ^a Jiayuan Liu, ^b Weiming Sun,^c Zhiru Li*^a and Ying Li*^a

^a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China

^b Institute of Applied Chemistry, Hebei North University, Zhangjiakou, 075000, China

^c Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China

Table S1. The static first hyperpolarizability (β_0^e) of Ca(Be₆)_nMg (n=2,3) calculated by different methods and the same basis 6-311+G(d).

β_0^e	Ca(Be ₆) ₂ Mg	Ca(Be ₆) ₃ Mg	
MP2	1.45×10 ⁴	4.61×10 ⁴	
B3LYP	1.90×10^{4}	2.16×10 ⁴	
CAM-B3LYP	1.93×10^{4}	2.60×10 ⁴	
BHandHLYP	1.82×10 ⁴	2.67×10 ⁴	
M06-2X	2.44×10 ⁴	9.33×10 ³	

Table S2. The static first hyperpolarizability (β_0^e) of Ca(Be₆)nMg (n=2,3) calculated by the same BHandHLYP method and different basis sets.

β_0^e	Ca(Be ₆) ₂ Mg	Ca(Be ₆) ₃ Mg
6-31+G	1.34×10 ⁴	2.05×10^{4}
6-31+G(d)	1.56×10 ⁴	2.33×10 ⁴
6-31+G(d,p)	1.56×10 ⁴	2.33×10 ⁴
6-31++G(d,p)	1.56×10 ⁴	2.33×10 ⁴
6-311+G(d)	1.82×10 ⁴	2.67×10 ⁴
6-311+G(d,p)	1.82×10^{4}	2.67×10^{4}
6-311++G(d,p)	1.82×10^{4}	2.67×10 ⁴
6-311++G(2d,2p)	1.82×10^{4}	2.67×10^{4}
6-311++G(2df,2pd)	1.85×10 ⁴	2.73×10 ⁴

Table S3. The valences (V), Static Electronic First Hyperpolarizability β_0^e (au), Electronic spatial extent $\langle R^2 \rangle$ (au) and Polarizability α^e (au).

Systems	V	${\beta}^e_0$	<r<sup>2></r<sup>	α^e
(Be ₆) ₄	0	0.0019×10 ⁴	5.78×10 ³	8.15×10 ²
Li(Be ₆) ₄	-1	2.45×10 ⁴	6.40×10 ³	8.59×10 ²
$Mg(Be_6)_4$	-2	1.73×10 ⁴	8.22×10 ³	9.84×10 ²
Li(Be ₆) ₄ Mg	-3	1.71×10^{4}	9.06×10 ³	9.91×10 ²
Na(Be ₆) ₄ Mg	-3	2.64×10 ⁴	11.1×10 ³	10.3×10 ²
Ca(Be ₆) ₄ Mg	-4	3.98×10 ⁴	13.4×10 ³	15.3×10 ²

The electronic spatial extent $\langle R^2 \rangle$ is a physical property which characterizes the electron density volume around the molecule.⁶⁶

Figure S1. The V value dependences on β_0^e and $< \mathbb{R}^2 >$.

Figure S2. Frontier orbitals and occupied orbitalsof for $(Be_6)_4$ chains and corresponding doped $Li(Be_6)_4$, $Mg(Be_6)_4$, $Li(Be_6)_4Mg$ and $Ca(Be_{6)}_4Mg$.