Supporting Information

Investigation of high concentration doping performance based on Er³⁺ ions doped Ba₆Gd₂Ti₄O₁₇

Yang Xu¹, Zhiying Wang¹, Hanyu Xu¹, Mochen Jia¹, Rong Wang^{1,*}, Tianqi Sheng², Zhen Sun¹, Xiaoyang Jin¹, Ziqian Lv¹ and Zuoling Fu^{1,*}

¹Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China, Fax: +86-431-85167966; Tel: +86-431-85167966; E-mail: zlfu@jlu.edu.cn (Z. L. Fu); Wangr@jlu.edu.cn (R. Wang)

²Zhong Sheng (Shen Zhen) Medical Equipment Science and Technology Co., Ltd., Shenzhen, Guangdong, China

1. Experimental Section

1.1 Synthesis of the Y₂O₃: 0.1Yb³⁺/0.25Er³⁺ phosphor

Firstly, the stoichiometric amount of rare earth nitrate stock solutions $(Y(NO_3)_3 \text{ of } 0.5_M, Yb(NO_3)_3 \text{ of } 0.1_M, Er(NO_3)_3 \text{ of } 0.05_M)$ was mixed and stirred. Then, citric acid as a chelating agent was add to the mixture at a molar ratio of [citric acid]/[metal]=1:2. After forming a transparent solution, the mixture was dried at 120 °C for 10 h. The obtained gel was

calcined at 500 $^\circ\!\! \mathbb C$ for 2h and then calcined at 1200 $^\circ\!\! \mathbb C$ for 4h.

Figure S1. Raman spectrum of BGTO host.

Figure S2. SEM images of the as-synthesized Yb³⁺/Er³⁺ co-doped (a) BGTO, (b) BGO and (c) BGZO phosphors.

Figure S3. (a) UC emission spectra of BGTO: $0.1Yb^{3+}/0.25Er^{3+}$ and BYTO: $0.1Yb^{3+}/yEr^{3+}$ (y=0.05, 0.15, 0.25, 0.35) along with (b) the line chart.

Figure S4. (a) Typical UC luminescence spectra of the BGTO: $0.1Yb^{3+}/0.25Er^{3+}$ phosphor and Y_2O_3 : $0.1Yb^{3+}/0.25Er^{3+}$ and (b) the average values of three measurements.

Figure S5. Emission intensities with different Er^{3+} concentration of (a)-(b) BGO: 0.1Yb³⁺/zEr³⁺ (c)-(d) BGTO: 0.1Yb³⁺/yEr³⁺ and (e)-(f) BGZO: 0.1Yb³⁺/qEr³⁺ (the average values of three measurements).

Figure S6. The emission spectra of BGO: 0.1Yb³⁺/0.05Er³⁺ and the R/G ratio at different temperatures.

Figure S7. The emission spectra of BGTO: $0.1Yb^{3+}/0.25Er^{3+}$ and the redgreen ratio at different temperatures.

Figure S8. Decay curves of the (a)-(d) ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and (e)-(h) ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transition in BGO: 0.1Yb³⁺/zEr³⁺ (y=0.01-0.07) under 980nm excitation.

Figure S9. Decay curves of the (a)-(d) ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and (e)-(h) ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transition in BGZO: 0.1Yb³⁺/qEr³⁺ (y=0.01-0.07) under 980nm excitation.

Figure S10. (a), (c) The luminescence spectra at different excitation powers of the BGTO: 0.1Yb³⁺/0.05Er³⁺ and 0.1Yb³⁺/0.25Er³⁺ phosphors. (b), (d) The corresponding relationship of red and green UC luminescence intensity versus excitation power density from a 980 nm

laser.

Figure S11. (a)-(b) The emission spectra and histogram at different excitation powers of the BGO: $0.1Yb^{3+}/0.05Er^{3+}$ phosphor. (c) The relationship of red and green UC luminescence intensity versus excitation power from a 980 nm laser for the BGO: $0.1Yb^{3+}/0.05Er^{3+}$ phosphor. (d) The energy level diagram of Yb^{3+}/Er^{3+} and the possible energy transfer mechanisms.

Figure S12. (a)-(b) The emission spectra and histogram at different excitation powers of the BGZO: $0.1Yb^{3+}/0.05Er^{3+}$ phosphor. (c) The relationship of red and green UC luminescence intensity versus excitation power from a 980 nm laser for the BGZO: $0.1Yb^{3+}/0.05Er^{3+}$ phosphor. (d) The energy level diagram of Yb³⁺/Er³⁺ and the possible energy transfer mechanisms.