Synthesis, characterization and utility of a series of novel copper(II) complexes as an excellent surface disinfectant against nosocomial infections

*Richa^a, *Namrata Kushwaha^b, Sheetal Negi^b, Ajay Kumar,^a Ennio Zangrando^c, Ramesh Kataria^{a#}, Vikram Saini^{b #}

^a Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.

^b Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.

^c Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy

*denotes equal contribution

[#]Correspondence:

Dr. Vikram Saini

Assistant Professor & HarGobind Khorana Innovative Young Biotechnologist (IYBA) Fellow,

Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India

Email: vikram@aiims.edu

Dr. Ramesh Kataria

Assistant Professor, Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, India. Email: rkataria@pu.ac.in

Supplementary Material

Complex	5a	5b	5c	5d	5e	5f
CCDC	2052523	2052524	2052525	2052526	2052527	2052528
Empirical formula	C ₂₁ H ₁₈ CuFN ₃ O ₄	C ₂₁ H ₁₈ CuClN ₃ O ₄	C ₂₁ H ₁₈ CuBrN ₃ O ₄	C ₂₃ H ₂₁ CuIN ₄ O ₄	$C_{21}H_{19}CuN_3O_4$	$C_{28}H_{25}CuN_3O_4$
M _r [g mol ⁻¹]	458.92	475.37	519.83	607.88	440.93	531.05
crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	monoclinic
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_1/n$
<i>a</i> [Å]	9.0860(2)	9.1761(3)	9.0332(3)	8.9881(3)	9.1448(7)	8.5888(3)
b [Å]	9.1382(2)	9.2338(3)	9.2739(3)	9.2451(4)	9.1465(7)	10.4392(4)
<i>c</i> [Å]	13.8154(3)	14.1378(4)	14.3155(4)	16.5516(7)	13.5672(11)	27.4486(8)
α [deg]	100.565(2)	99.591(2)	98.566(2)	74.599(4)	100.002(7)	90.0
β [deg]	99.858(2)	98.741(2)	98.464(2)	86.394(3)	100.450(7)	92.294(3)
γ [deg]	114.860(2)	115.625(3)	115.332(3)	64.904(4)	115.079(8)	90.0
V [Å ³]	982.71(4)	1030.62(6)	1041.57(6)	1198.86(9)	969.95(15)	2459.07(15)
Z	2	2	2	2	2	4
ρ_{calc} [g cm ⁻³]	1.551	1.532	1.658	1.684	1.510	1.434
μ [mm ⁻¹]	1.155	1.222	3.000	2.235	1.159	0.928
<i>F</i> (000)	470.0	486	522	602	454	1100
crystal size [mm] ³	0.17×0.15×0.13	0.25×0.22×0.2	0.2×0.18×0.16	0.26×0.24×0.2	0.22×0.2×0.18	0.17×0.16×0.12
θ _{range} [deg]	3.36-25.87	3.27-25.82	3.19-27.40	3.34-27.434	3.18-25.26	3.18-27.32
reflections collected	8810	8168	14511	15511	6887	21387
Indep reflections	3669	3863	4391	5085	3354	5188
R _{int}	0.0328	0.0330	0.0393	0.0634	0.0443	0.1338
Parameters refined	273	273	273	301	264	327
GOF on F^2	1.043	1.034	1.044	1.069	1.020	1.053
R1, wR2 $[I > 2\sigma(I)]$	0.0323, 0.0787	0.0359, 0.0927	0.0330, 0.0690	0.0671, 0.1750	0.0489, 0.1361	0.0631, 0.1660
R1, wR2 (all data)	0.0399, 0.0821	0.0418, 0.0980	0.0467, 0.0726	0.1091, 0.1963	0.0646, 0.1485	0.0903, 0.1921
residuals [e Å ⁻³]	0.27, -0.25	0.315, -0.348	0.742, -0.657	0.630, -0.867	0.362, -0.463	0.388, -0.817

Table S1. Crystallographic data and refinement parameters for complexes 5a-5f.

	5a	5b	5c
Cu-O(1)	1.9000(14)	1.8994(16)	1.9030(14)
Cu-O(2)	1.8671(15)	1.8633(17)	1.8681(15)
Cu-N(2)	1.9244(17)	1.923(2)	1.9217(18)
Cu-N(3)	2.0233(17)	2.0289(19)	2.0253(17)
O(1)-Cu-N(2)	83.34(6)	83.31(7)	83.38(7)
O(1)-Cu-N(3)	92.10(7)	92.20(7)	92.24(7)
O(2)-Cu-O(1)	176.86(6)	175.59(8)	174.61(7)
O(2)-Cu-N(2)	93.59(7)	93.50(8)	93.43(7)
O(2)-Cu-N(3)	90.92(7)	90.79(8)	90.90(7)
N(2)-Cu-N(3)	173.99(7)	175.29(8)	175.57(7)

Table S2. Coordination bond lengths (Å) and angles (°) for complexes 5a, 5b, and 5c.

Table S3. Coordination bond lengths (Å) and angles (°) for complexes 5d, 5e, and 5f.

	5d	5e	5f
Cu-O(1)	1.896(4)	1.894(3)	1.910(2)
Cu-O(2)	1.846(4)	1.859(3)	1.912(2)
Cu-N(2)	1.913(4)	1.916(3)	1.915(3)
Cu-N(3)	2.022(4)	2.021(3)	1.991(3)
Cu-O(2)'	-	-	2.711(3)
O(1)-Cu-N(2)	83.26(16)	83.23(11)	82.72(11)
O(1)-Cu-N(3)	91.62(16)	91.94(12)	98.96(11)
O(2)-Cu- $O(1)$	176.24(17)	177.15(9)	165.11(11)
O(2)-Cu-N(2)	93.99(16)	93.97(11)	91.53(10)
O(2)-Cu-N(3)	91.41(16)	90.81(11)	89.82(10)
N(2)-Cu- $N(3)$	171.66(19)	173.41(12)	166.56(11)

O(2)' at 1-x, 1-y, 1-z.

-	, C	1		1			
complex	D-H	А	d(D-H)	d(HA)	d(DA)	<dha< th=""><th>Symmetry code</th></dha<>	Symmetry code
5a	N3-H3a	01	0.89	2.24	3.013(3)	145	1-x,-y,1-z
	N3-H3b	04	0.89	2.14	3.019(3)	168	-1+x,-1+y,z
5b	N3-H3a	04	0.89	2.15	3.021(3)	168	-1+x,-1+y,z
	N3-H3b	01	0.89	2.24	3.016(3)	146	-x,1-y,1-z
_	N3-H3a	01	0.89	2.20	2.969(3)	145	2-x,1-y,1-z
50	N3-H3b	04	0.89	2.14	3.014(2)	169	1+x, 1+y, z
5.4	N3-H3a	01	0.89	2.21	2.988(6)	147	2-x,1-y,1-z
50	N3-H3b	04	0.89	2.18	3.054(6)	168	1+x,-1+y,z
5e	N3-H3a	04	0.89	2.17	3.046(4)	168	-1+x,-1+y,z
	N3-H3b	01	0.89	2.25	3.015(4)	143	-x,1-y,1-z
5 f	N3-H3a	04	0.89	2.20	3.020(4)	153	2-x,1-y,1-z

Table S4. Hydrogen bond parameters (Å /°) for complexes **5a-5f**.

X-H	Cg	d(X-H)	d(HCg)	d(XCg)	<xhcg< td=""><td>Symmetry code</td></xhcg<>	Symmetry code		
<u>5a</u>								
С15-Н15а	Cg1	0.96	2.90	3.625(4)	133	1+x, 1+y, z		
			5b					
C15-H15c	Cg1	0.96	2.85	3.556(4)	131	1+x, 1+y, z		
			5c			-		
C15-H15a	Cg1	0.96	2.79	3.509(3)	132	-1+x, -1+y, z		
			5d					
C15-H15a	Cg1	0.96	2.98	3.739(8)	136	-1+x, 1+y, z		
			5e					
C15-H15c	Cg1	0.96	2.84	3.627(6)	139	1+x, 1+y, z		
5f								
С6-Н6	Cg7	0.93	2.93	3.732(5)	146	x, 1+y, z		
C14-H14b	Cg6	0.96	2.98	3.680(4)	131	1-x, 1-y, 1-z		
С15-Н15а	Cg2	0.96	2.63	3.517(4)	154	2-x, 1-y, 1-z		
С26-Н26	Cg5	0.93	2.78	3.549(6)	141	3/2-x, -1/2+y, 1/2-z		

Table S5. Analysis of C-H... π -ring interactions for complexes 5a-5f.

Cg1 = aniline ring C16/C21. For **5f** Cg2 = Cu/O2/C8/C12/C13/N2; Cg5 = benzohydrazide ring C2/C7; Cg6 = benzhydrylamine phenyl ring C17/C22; Cg7 = benzhydrylamine phenyl ring C23/C28.

S.N	Compou	HOM	LUM	Chemic	Chemic	Electrophilici	Chemic
0	nd	0	0	al	al	ty index (ω)=	al
				potentia	hardnes	μ²/2η	softness
1	5a	-16.06	-14.79	-15.43	0.64	187.13	1.57
2	5b	-15.85	-14.64	-15.24	0.61	191.83	1.65
3	5c	-15.71	-14.48	-15.09	0.61	185.78	1.63
4	5d	-15.45	-14.28	-14.86	0.585	188.73	1.70
5	5e	-16.04	-14.75	-15.40	0.65	183.51	1.55
6	5f	-5.59	-1.87	-3.73	1.86	3.74	0.54

Table S6: Electrostatic properties of metal complexes (5a-5f) calculated using DFT methods.

Sr. No.	Name of the Copper compounds	Epc1(V)	Epc2 (V)	Epa1 (V)
1	[CuL(4F-An)] (5a)	-0.51	0.37	0.45
2	[CuL(4Cl-An)] (5b)	-0.53	0.35	0.46
3	[CuL(4Br-An)] (5c)	-0.56	0.34	0.46
4	[CuL(4I-An)] (5d)	-0.60	0.32	0.43
5	[CuL(An)] (5e)	-0.51	0.36	0.46
6	[CuL(Benzhydrylamine)] (5f)	-0.53	0.34	0.44

Table S7: Results of cyclic voltammogram of complexes 5a-5f.

 Table S8. Details of the HRMS study of copper complexes 5a-5f.

Complex	Formula	Ion Peak m/z [M+H] ⁺			
Complex	rormula	Calculated	Found		
5 a	C21H18O4N3CuF	459.0656	459.0438		
5b	C21H18O4N3CuCl	475.0360	475.0761		
5c	C21H18O4N3CuBr	518.9855	519.1699		
5d	C21H18O4N3CuI	566.9716	567.0185		
5e	C21H19O4N3Cu	441.0750	441.4246		
5 f	C28H25O4N3Cu	531.1219	531.0933		

Table S9: Antimicrobial efficacy of individual ligands and the Minimum Inhibitory Concentration (MIC) of the compounds (μ g/mL). No killing indicates that no significant difference in bacterial survival till 512 μ g/mL.

		S. aureus	K. pneumoniae	E. coli
1.	Copper acetate	No Killing	No Killing	No Killing
	Complex 4	No Killing	No Killing	No Killing
	4-Chloroaniline	No Killing	No Killing	No Killing
	5b [CuL(4Cl-An)]	20.62 µg/mL	>64 µg/mL	44.45 μg/mL
2.	Copper acetate	No Killing	No Killing	No Killing
	Complex 4	No Killing	No Killing	No Killing
	Aniline	10%	No Killing	No Killing
	5e [CuL(An)]	11.89 µg/mL	No Killing	>64 µg/mL
3.	Copper acetate	No Killing	No Killing	No Killing
	Complex 4	No Killing	No Killing	No Killing
	Benzhydrylamine	20%	No Killing	No Killing
	5f [CuL(Benzhydrylamine)]	2.435 µg/mL	>64 µg/mL	25.29 μg/mL

Table S10: Summary of TGA results.

Code	Compound	Temperature Range(°C)	Weight Loss Found/(Calcd.)	Assignment
5a	CuL(4F-An)	25-240	30.05(29.09)	Loss of 4- flouroaniline and CO molecule
		240-350	23.77(24.25)	Loss of NO and NO ₂
5b	CuL(4Cl-An)	25-230	36.09(36.54)	Loss of 4 - chloroaniline and CO_2 molecule
		230-360	25.02(26.75)	Loss of NO and NO ₂
5c	CuL(4Br-An)	25-270	33.09(33.83)	Loss of 4- bromoaniline
		270-360	25.31(24.62)	Loss of CO ₂ and N ₂ O molecule
5d	CuL(4I-An)	25-240	45.57(45.87)	Loss of 4- iodoaniline, CO and NO
		240-390	30.41(29.29)	Loss of CO, CO_2 and NO_2
5e	CuL(An)	25-240	24.52(24.00)	Loss of aniline and one CH ₃ molecule
		240-370	31.26(32.85)	Loss of CO, NO and NO ₂
5f	CuL(Benzhydrylamine)	25-160	12.06(11.73)	Loss of two CH ₃ OH molecule
		160-330	52.09(52.12)	Loss of benzhydrylamine, and two NO molecule

Figure S1(a): Whole HRMS spectrum of copper complex 5a.

Figure S1(b): Partial HRMS spectrum of copper complex 5a.

Figure S2(a): Whole HRMS spectrum of copper complex 5b.

Figure S3(a): Whole HRMS spectrum of copper complex 5c.

Figure S3(b): Partial HRMS spectrum of copper complex 5c.

Figure S4(a): Whole HRMS spectrum of copper complex 5d.

Figure S4(b): Partial HRMS spectrum of copper complex 5d.

Figure S5(a): Whole HRMS spectrum of copper complex 5e.

Figure S5(b): Partial HRMS spectrum of copper complex 5e.

Figure S6(a): Whole HRMS spectrum of copper complex 5f.

Figure S6(b): Partial HRMS spectrum of copper complex 5f.

5c

5e

Figure S7: Molecular structure of complexes **5a–5e** (ORTEP diagrams with ellipsoid probability at 50%).

Figure S8: 3D architecture viewed down axis *c* in the crystal packing of **5f** built by C-H... π -ring interactions (parameters reported in Table 5S).

Figure S9: Hirshfeld surface analysis of complexes 5a, 5c and 5d.

Figure S10: 2D fingerprint plots for complexes 5a, 5c and 5d.

Figure S11: Relative percentage contributions of several intermolecular interactions on the Hirshfeld surface area of these complexes.

Figure S12: Powder XRD spectra of 5a-5f complexes.

Figure S13 (a): FT-IR spectrum of complexe [CuL(4F-An)] (5a).

Figure S13 (b): FT-IR spectrum of complex [CuL(4Cl-An)] (5b).

Figure S13 (c): FT-IR spectrum of complex [CuL(4Br-An)] (5c).

Figure S13 (d): FT-IR spectrum of complex [CuL(4I-An)] (5d).

Figure S13 (e): FT-IR spectrum of complex [CuL(An)] (5e).

Figure S13 (f): FT-IR spectrum of complex [CuL(Benzhydrylamine)] (5f).

ure S13 (g): FT-IR spectra of synthesized ligand H₂L and complex H₂L-Cu²⁺.

Figure S13 (h): Computed FT-IR spectrum of complex [CuL(4F-An)] (5a).

Figure S13 (i): Computed FT-IR spectrum of complex [CuL(Benzhydrylamine)] (5f).

Figure S14 (a): UV- vis spectrum of ligand H₂L.

Figure S14 (b): UV- vis spectra of synthesized complexes 5a and 5b.

Figure S14 (c): UV- vis spectra of synthesized complexes 5c and 5d.

Figure S14 (d): UV- vis spectra of synthesized complexes 5e and 5f.

Figure S15 (a): Cyclicvoltammetric response of complex 4 using 0.05 M KCl solution at scan rate of 25 mV/sec.

Figure S15 (b): Cyclicvoltammetric response complexes 5a and 5b using 0.05 M KCl solution at scan rate of 25 mV/sec.

Figure S15 (c): Cyclicvoltammetric response complexes **5c** and **5d** using 0.05 M KCl solution at scan rate of 25 mV/sec.

Figure S15 (d): Cyclicvoltammetric response complexes **5e** and **5f** using 0.05 M KCl solution at scan rate of 25 mV/sec.

‡ All the potentials are referenced to Ag/AgCl electrode.

Figure S16: Log CFU/mL of all bacteria used in the study in the presence of various concentration of complexes **4**, **5a-5f**, ligand (**3**) and Kanamycin as comparison after 24h of treatment. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate.

Figure S17: Impact on growth of *S. aureus* in the presence of various concentrations of compounds used in this study. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate.

Figure S18: Impact on growth of *E. faecalis* in the presence of various concentrations of compounds used in this study. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate. Meropenem, a third generation antibiotic was also used as control to show that MIC of compound 5f is comparable to this drug.

Figure S19: Impact on growth of *E. coli* in the presence of various concentrations of compounds used in this study. Data represent mean \pm SD for all data point. Each experiment was performed at least twice in duplicate. Note: No effect on growth in presence of complexes 4, 5c, 5d, and ligand 3.

Figure S20: Impact on growth of *A. baumannii* in the presence of various concentrations of compounds used in this study. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate. Note: No effect on growth in presence of complexes **4**, **5a**, **5c**, **5d**, and ligand **3**.

Figure S21: Impact on growth of *K. pneumoniae* in the presence of various concentrations of compounds used in this study. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate. Note: No effect on growth in presence of complexes **4**, **5a**, **5c**, **5d**, and ligand **3**.

Figure S22: Impact on growth of P. aeruginosa in the presence of various concentrations of compounds used in this study. Data represent mean±SD for all data point. Each experiment was performed at least twice in duplicate. Note: No effect on growth in presence of complexes **4**, **5b**, **5c**, **5d**, and ligand **3**.

Figure S23: MTT assay indicate negligible cell toxicity of the residual compound [CuL(Benzhydrylamine)] 5f. Data indicate precent cell viability of HEK-293 kidney cell line at 3 hours and 6 hours of direct exposure of the residual compound to the cell. Data represent mean \pm SD (**P<0.01). Each experiment was performed at least twice in triplicate.

Figure S24: ¹³C-NMR Spectrum of H₂L in CDCl₃.

Figure S25 (a): ¹H-NMR Spectrum of ligand H_2L in CDCl₃ (Whole Spectrum).

Figure S25 (b): ¹H-NMR Spectrum of ligand H₂L in CDCl₃ (Partial Spectrum).

TGA and DSC analysis of complexes 5a-5f

Figure S26: (a)Thermo gravimetric curves of all solvated metal complexes and (b) DSC plot of all solvated metal complexes.

Thermal gravimetric analysis was performed to check the thermal stability of all the synthesized copper complexes over the temperature range 25-1000 °C under nitrogen

atmosphere. The weight loss pattern is explained in **Table-S10**. In all the copper complexes described and evaluated in this manuscript, the residue is CuO. In case of DSC analysis, the sharp endothermic peak in the range of 285-295 °C for complexes 5a-5f was in good agreement with TGA data.

Figure S27: ¹H-NMR Spectra of benzohydrazide in CDCl₃.